高等数学 A2 周维祺
将参数方程f:t↦(x(t),y(t),z(t))f:t\mapsto\left(x(t),y(t),z(t)\right)f:t↦(x(t),y(t),z(t)) 视作质点运动的轨迹
f′(t)=(x′(t),y′(t),z′(t))f'(t)=\left(x'(t),y'(t),z'(t)\right)f′(t)=(x′(t),y′(t),z′(t))即定义为ttt时刻的瞬时线速度
f′(t)f'(t)f′(t)的方向即fff在ttt时刻变化的方向, x′(t),y′(t),z′(t)x'(t),y'(t),z'(t)x′(t),y′(t),z′(t)即在三个坐标轴方向上各自的瞬时速度(fff的变化率)
同理,f′′(t)f''(t)f′′(t)即定义为加速度
给定曲线f:t↦(x(t),y(t),z(t))f:t\mapsto\left(x(t),y(t),z(t)\right)f:t↦(x(t),y(t),z(t))
设x0=x(t0)x_0=x(t_0)x0=x(t0),y0=y(t0)y_0=y(t_0)y0=y(t0),z0=z(t0)z_0=z(t_0)z0=z(t0)
则(x0,y0,z0)(x_0,y_0,z_0)(x0,y0,z0)处切线的方向为(x′(t0),y′(t0),z′(t0))(x'(t_0),y'(t_0),z'(t_0))(x′(t0),y′(t0),z′(t0))
切线方程: (x−x0,y−y0,z−z0)=k(x′(t0),y′(t0),z′(t0))(x-x_0,y-y_0,z-z_0)=k(x'(t_0),y'(t_0),z'(t_0))(x−x0,y−y0,z−z0)=k(x′(t0),y′(t0),z′(t0))
过(x0,y0,z0(x_0,y_0,z_0(x0,y0,z0)且与该处切线垂直的平面称为该点处的法平面
方程: x′(t0)(x−x0)+y′(t0)(y−y0)+z′(t0)(z−z0)=0x'(t_0)(x-x_0)+y'(t_0)(y-y_0)+z'(t_0)(z-z_0)=0x′(t0)(x−x0)+y′(t0)(y−y0)+z′(t0)(z−z0)=0
设曲线以曲面交线形式给出:{F(x,y,z)=0G(x,y,z)=0\begin{cases}F(x,y,z)=0 \\ G(x,y,z)=0\end{cases}{F(x,y,z)=0G(x,y,z)=0,F,GF,GF,G的各偏导数存在且连续
设上式能确定为以下三种情况中至少的一种的隐函数 (1) y=φ(x),z=ψ(x)y=\varphi(x), z=\psi(x)y=φ(x),z=ψ(x) (不妨设为此种情况) (2) z=φ(y),z=ψ(y)z=\varphi(y), z=\psi(y)z=φ(y),z=ψ(y) (3) x=φ(z),y=ψ(z)x=\varphi(z), y=\psi(z)x=φ(z),y=ψ(z)
用链式法则对xxx求导:{Fx+Fyφ′+Fzψ′=0Gx+Gyφ′+Gzψ′=0\begin{cases}F_x+F_y\varphi'+F_z\psi'=0 \\ G_x+G_y\varphi'+G_z\psi'=0\end{cases}{Fx+Fyφ′+Fzψ′=0Gx+Gyφ′+Gzψ′=0
解出φ′\varphi'φ′, ψ′\psi'ψ′,则切线方向即(1,φ′,ψ′)(1,\varphi',\psi')(1,φ′,ψ′)
策略:即视作以xxx为参数方程(x,φ(x),ψ(x))(x,\varphi(x),\psi(x))(x,φ(x),ψ(x))的隐函数
用上述方法求曲线 {x2+y2+z2=2z=1\begin{cases}x^2+y^2+z^2=2 \\ z=1 \end{cases}{x2+y2+z2=2z=1在(0,1,1)(0,1,1)(0,1,1)处的切线和法平面
视作以xxx为参数方程(x,φ(x),ψ(x))(x,\varphi(x),\psi(x))(x,φ(x),ψ(x))的隐函数
用链式法则对xxx求导:{2x+2yφ′+2zψ′=00+0+ψ′=0\begin{cases}2x+2y\varphi'+2z\psi'=0 \\ 0+0+\psi'=0\end{cases}{2x+2yφ′+2zψ′=00+0+ψ′=0
解得 {φ′=−x/yψ′=0\begin{cases}\varphi'=-x/y \\ \psi'=0\end{cases}{φ′=−x/yψ′=0
φ′(0,1,1)=ψ′(0,1,1)=0\varphi'(0,1,1)=\psi'(0,1,1)=0φ′(0,1,1)=ψ′(0,1,1)=0,故切线方向为(1,0,0)(1,0,0)(1,0,0)
切线:(x,y−1,z−1)=t(1,0,0)(x,y-1,z-1)=t(1,0,0)(x,y−1,z−1)=t(1,0,0); 法平面:x=0x=0x=0
设有曲面S:F(x,y,z)=0S: F(x,y,z)=0S:F(x,y,z)=0, FFF的偏导数存在且连续
设在点P:(x0,y0,z0)P:(x_0,y_0,z_0)P:(x0,y0,z0)处,FFF的各偏导数不同时为000
设曲线Γ:t↦(f(t),g(t),h(t))\Gamma: t\mapsto\left(f(t),g(t),h(t)\right)Γ:t↦(f(t),g(t),h(t))在曲面SSS上
设Γ\GammaΓ在t0t_0t0处过点PPP: (x0,y0,z0)=(f(t0),g(t0),h(t0))(x_0,y_0,z_0)=\left(f(t_0),g(t_0),h(t_0)\right)(x0,y0,z0)=(f(t0),g(t0),h(t0))
Γ\GammaΓ在SSS上: F(f(t),g(t),h(t))=0F(f(t),g(t),h(t))=0F(f(t),g(t),h(t))=0
对ttt求导:Fxf′+Fyg′+Fzh′=0F_xf'+F_yg'+F_zh'=0Fxf′+Fyg′+Fzh′=0
记v⃗=(f′(t0),g′(t0),h′(t0))\vec v=(f'(t_0),g'(t_0),h'(t_0))v=(f′(t0),g′(t0),h′(t0))为Γ\GammaΓ在t0t_0t0处的切线方向
则有∇F⋅v⃗=0\nabla F\cdot \vec v=0∇F⋅v=0
这些切线都在同一个平面上⇒\Rightarrow⇒ PPP处的切平面
求球面x2+y2+z2=3x^2+y^2+z^2=3x2+y2+z2=3上平行于平面x+y+z=6x+y+z=6x+y+z=6的切平面方程
一元向量值函数导数的物理意义
空间曲线的切线与法平面以及在标准方程下的求解
空间曲面的切平面与法线