高等数学 A2 周维祺
设z=f(x,y)z=f(x,y)z=f(x,y)的偏导数都存在且偏导数都连续
参数方程x=x(t),y=y(t)x=x(t),y=y(t)x=x(t),y=y(t)对于ttt可导
则zzz对于ttt可导,导数为z′(t)=∂z∂xdxdt+∂z∂ydydtz'(t)=\frac{\partial z}{\partial x}\frac{dx}{dt}+\frac{\partial z}{\partial y}\frac{dy}{dt}z′(t)=∂x∂zdtdx+∂y∂zdtdy
设z=f(x,y)z=f(x,y)z=f(x,y)的偏导数都存在且偏导数都连续 ⇒\Rightarrow⇒ zzz的全微分存在
当ttt有增量Δt\Delta tΔt时,x,yx,yx,y也有增量: Δx=x(t+Δt)−x(t)\Delta x=x(t+\Delta t)-x(t)Δx=x(t+Δt)−x(t) Δy=y(t+Δt)−y(t)\Delta y=y(t+\Delta t)-y(t)Δy=y(t+Δt)−y(t)
zzz的增量可以借助全微分: Δz=∂z∂xΔx+∂z∂yΔy+o((Δx)2+(Δy)2)\Delta z=\frac{\partial z}{\partial x}\Delta x+\frac{\partial z}{\partial y}\Delta y+o(\sqrt{(\Delta x)^2+(\Delta y)^2})Δz=∂x∂zΔx+∂y∂zΔy+o((Δx)2+(Δy)2)
两边同除以Δt\Delta tΔt,得 ΔzΔt=∂z∂xΔxΔt+∂z∂yΔyΔt+o((Δx)2+(Δy)2)Δt\frac{\Delta z}{\Delta t}=\frac{\partial z}{\partial x}\frac{\Delta x}{\Delta t}+\frac{\partial z}{\partial y}\frac{\Delta y}{\Delta t}+\frac{o(\sqrt{(\Delta x)^2+(\Delta y)^2})}{\Delta t}ΔtΔz=∂x∂zΔtΔx+∂y∂zΔtΔy+Δto((Δx)2+(Δy)2)
令Δt→0\Delta t\to 0Δt→0 ΔzΔt→z′(t)\frac{\Delta z}{\Delta t}\to z'(t)ΔtΔz→z′(t), ΔxΔt→x′(t)=dxdt\quad\frac{\Delta x}{\Delta t}\to x'(t)=\frac{dx}{dt}ΔtΔx→x′(t)=dtdx, ΔyΔt→y′(t)=dydt\quad\frac{\Delta y}{\Delta t}\to y'(t)=\frac{dy}{dt}ΔtΔy→y′(t)=dtdy
(思考:为什么) (Δx)2+(Δy)2Δt=(ΔxΔt)2+(ΔyΔt)2→(x′(t))2+(y′(t))2\frac{\sqrt{(\Delta x)^2+(\Delta y)^2}}{\Delta t}=\sqrt{(\frac{\Delta x}{\Delta t})^2+(\frac{\Delta y}{\Delta t})^2}\to\sqrt{\left(x'(t)\right)^2+\left(y'(t)\right)^2}Δt(Δx)2+(Δy)2=(ΔtΔx)2+(ΔtΔy)2→(x′(t))2+(y′(t))2
(思考:为什么) o((Δx)2+(Δy)2)Δt→0\frac{o\left(\sqrt{(\Delta x)^2+(\Delta y)^2}\right)}{\Delta t}\to0Δto((Δx)2+(Δy)2)→0
综上,得 z′(t)=∂z∂xdxdt+∂z∂ydydtz'(t)=\frac{\partial z}{\partial x}\frac{dx}{dt}+\frac{\partial z}{\partial y}\frac{dy}{dt}z′(t)=∂x∂zdtdx+∂y∂zdtdy
z=exyz=e^{xy}z=exy
x=costx=\cos tx=cost, y=sinty=\sin ty=sint
利用链式法则求z′(t)z'(t)z′(t)
z=f(x1,…,xn)z=f(x_1,\ldots,x_n)z=f(x1,…,xn),xk=xk(t1,…,tm)x_k=x_k(t_1,\ldots,t_m)xk=xk(t1,…,tm),求∂z∂tj\frac{\partial z}{\partial t_j}∂tj∂z
设z=f(x1,…,xn)z=f(x_1,\ldots,x_n)z=f(x1,…,xn)的偏导数都存在且偏导数都连续
各参数方程xk=xk(t1,…,tm)x_k=x_k(t_1,\ldots,t_m)xk=xk(t1,…,tm)的各偏导都存在
则zzz对于tjt_jtj的偏导数为∂z∂tj=∂z∂x1∂x1∂tj+…+∂z∂xn∂xn∂tj\frac{\partial z}{\partial t_j}=\frac{\partial z}{\partial x_1}\frac{\partial x_1}{\partial t_j}+\ldots+\frac{\partial z}{\partial x_n}\frac{\partial x_n}{\partial t_j}∂tj∂z=∂x1∂z∂tj∂x1+…+∂xn∂z∂tj∂xn
z=ex2+y2z=e^{x^2+y^2}z=ex2+y2, x=rcosθx=r\cos\thetax=rcosθ, y=rsinθy=r\sin\thetay=rsinθ
∂z∂x=2xex2+y2\frac{\partial z}{\partial x}=2xe^{x^2+y^2}∂x∂z=2xex2+y2, ∂z∂y=2yex2+y2\frac{\partial z}{\partial y}=2ye^{x^2+y^2}∂y∂z=2yex2+y2 ∂x∂r=cosθ\frac{\partial x}{\partial r}=\cos\theta∂r∂x=cosθ, ∂x∂θ=−rsinθ\frac{\partial x}{\partial \theta}=-r\sin\theta∂θ∂x=−rsinθ, ∂y∂r=sinθ\frac{\partial y}{\partial r}=\sin\theta∂r∂y=sinθ, ∂y∂θ=rcosθ\frac{\partial y}{\partial\theta}=r\cos\theta∂θ∂y=rcosθ
∂z∂r=∂z∂x∂x∂r+∂z∂y∂y∂r=2ex2+y2(xcosθ+ysinθ)=2rer2\frac{\partial z}{\partial r}=\frac{\partial z}{\partial x}\frac{\partial x}{\partial r}+\frac{\partial z}{\partial y}\frac{\partial y}{\partial r}=2e^{x^2+y^2}(x\cos\theta+y\sin\theta)=2re^{r^2}∂r∂z=∂x∂z∂r∂x+∂y∂z∂r∂y=2ex2+y2(xcosθ+ysinθ)=2rer2 ∂z∂θ=∂z∂x∂x∂θ+∂z∂y∂y∂θ=2rex2+y2(ycosθ−xsinθ)=0\frac{\partial z}{\partial \theta}=\frac{\partial z}{\partial x}\frac{\partial x}{\partial \theta}+\frac{\partial z}{\partial y}\frac{\partial y}{\partial \theta}=2re^{x^2+y^2}(y\cos\theta-x\sin\theta)=0∂θ∂z=∂x∂z∂θ∂x+∂y∂z∂θ∂y=2rex2+y2(ycosθ−xsinθ)=0
x=u+vx=u+vx=u+v, y=u−vy=u-vy=u−v
利用链式法则计算zzz对u,vu,vu,v的偏导数
给定z=f(x,y)z=f(x,y)z=f(x,y),全微分 dz=zxdx+zydydz=z_xdx+z_ydydz=zxdx+zydy
若x=x(u,v)x=x(u,v)x=x(u,v), 则 dx=xudu+xvdvdx=x_udu+x_vdvdx=xudu+xvdv 若y=y(u,v)y=y(u,v)y=y(u,v), 则 dy=yudu+yvdvdy=y_udu+y_vdvdy=yudu+yvdv
zudu+zvdv=(zxxu+zyyu)du+(zxxv+zyyv)dv =zx(xudu+xvdv)+zy(xvdv+yvdv) =zxdx+zydy=dzz_udu+z_vdv=(z_xx_u+z_yy_u)du+(z_xx_v+z_yy_v)dv \\ \quad\quad\quad\quad\quad\;\;\,=z_x(x_udu+x_vdv)+z_y(x_vdv+y_vdv) \\ \quad\quad\quad\quad\quad\;\;\, =z_xdx+z_ydy=dzzudu+zvdv=(zxxu+zyyu)du+(zxxv+zyyv)dv=zx(xudu+xvdv)+zy(xvdv+yvdv)=zxdx+zydy=dz
dz=∂z∂xdx+∂z∂ydy=∂z∂udu+∂z∂vdvdz=\frac{\partial z}{\partial x}dx+\frac{\partial z}{\partial y}dy=\frac{\partial z}{\partial u}du+\frac{\partial z}{\partial v}dv dz=∂x∂zdx+∂y∂zdy=∂u∂zdu+∂v∂zdv
z=x+yz=x+yz=x+y
x=uvx=uvx=uv, y=u2+v2y=u^2+v^2y=u2+v2
利用全微分的形式不变性计算zzz对u,vu,vu,v的偏导数
单一变量的链式求导
多个变量的链式求导
全微分的形式不变性