高等数学 A1 周维祺
求y=x2y=x^2y=x2与y2=xy^2=xy2=x所围成图形的面积
交点为(0,0)(0,0)(0,0),(1,1)(1,1)(1,1)
x∈(0,1)x\in(0,1)x∈(0,1)时,y2=xy^2=xy2=x的图像在y=x2y=x^2y=x2的上方
面积=∫01x−x2dx=23−13=13=\int_0^1\sqrt x-x^2dx=\frac{2}{3}-\frac{1}{3}=\frac{1}{3}=∫01x−x2dx=32−31=31
求极坐标下ρ=2acosθ\rho=2a\cos\thetaρ=2acosθ与θ=0\theta=0θ=0,θ=π2\theta=\frac{\pi}{2}θ=2π围成的面积(a>0)(a>0)(a>0)
扇形面积12ρ2dθ\frac{1}{2}\rho^2d\theta21ρ2dθ
面积=∫0π212⋅4a2cos2θdθ=a2∫0π2(cos(2θ)+1)dθ=πa22=\int_0^{\frac{\pi}{2}}\frac{1}{2}\cdot 4a^2\cos^2\theta d\theta=a^2\int_0^{\frac{\pi}{2}}(\cos(2\theta)+1)d\theta=\frac{\pi a^2}{2}=∫02π21⋅4a2cos2θdθ=a2∫02π(cos(2θ)+1)dθ=2πa2
原式ρ2=2aρcosθ\rho^2=2a\rho\cos\thetaρ2=2aρcosθ,即(x−a)2+y2=a2(x-a)^2+y^2=a^2(x−a)2+y2=a2,所求即上半圆面积
求y2=2xy^2=2xy2=2x与y=x−4y=x-4y=x−4所围成图形的面积
求椭圆x2a2+y2b2=1\frac{x^2}{a^2}+\frac{y^2}{b^2}=1a2x2+b2y2=1的面积
求y=exy=e^xy=ex下方、该曲线某条经过原点的切线左侧、及xxx轴上方区域的面积
求ρ=1+cosθ\rho=1+\cos\thetaρ=1+cosθ所围成图形的面积
求椭圆x2a2+y2b2=1\frac{x^2}{a^2}+\frac{y^2}{b^2}=1a2x2+b2y2=1绕xxx轴旋转所得图形的体积
截面是半径为y=b1−x2a2y=b\sqrt{1-\frac{x^2}{a^2}}y=b1−a2x2的圆,其面积为πy2=π(b2−b2x2a2)\pi y^2=\pi(b^2-\frac{b^2x^2}{a^2})πy2=π(b2−a2b2x2)
体积=π∫−aa(b2−b2x2a2)dx=π(2b2a−2b2a33a2)=43πab2=\pi\int_{-a}^a(b^2-\frac{b^2x^2}{a^2})dx=\pi(2b^2a-\frac{2b^2a^3}{3a^2})=\frac{4}{3}\pi ab^2=π∫−aa(b2−a2b2x2)dx=π(2b2a−3a22b2a3)=34πab2
一平面经过半径为RRR的圆柱底圆中心,与底面夹角为α\alphaα,求该平面在圆柱上所截得的体积
求x=rcosθ,y=rsinθx=r\cos\theta, y=r\sin\thetax=rcosθ,y=rsinθ的周长
dx=rsinθdθdx=r\sin\theta d\thetadx=rsinθdθ,dy=rcosθdθdy=r\cos\theta d\thetady=rcosθdθ
弧长=∫02π(dx)2+(dy)2dθ=2πr=\int_0^{2\pi}\sqrt{(dx)^2+(dy)^2}d\theta=2\pi r=∫02π(dx)2+(dy)2dθ=2πr
求x2+y2=r2x^2+y^2=r^2x2+y2=r2的周长
取上半圆:y=r2−x2y=\sqrt{r^2-x^2}y=r2−x2,y′=−xr2−x2y'=\frac{-x}{\sqrt{r^2-x^2}}y′=r2−x2−x
弧长=2∫−rr1+(y′)2dx=2∫−rr1+x2r2−x2dx=2\int_{-r}^{r}\sqrt{1+(y')^2}dx=2\int_{-r}^{r}\sqrt{1+\frac{x^2}{r^2-x^2}}dx=2∫−rr1+(y′)2dx=2∫−rr1+r2−x2x2dx
=2r∫−rr1r2−x2dx=2rarcsinxr∣−rr=2πr=2r\int_{-r}^{r}\sqrt{\frac{1}{r^2-x^2}}dx=2r\left.\arcsin\frac{x}{r}\right|_{-r}^r=2\pi r=2r∫−rrr2−x21dx=2rarcsinrx∣∣−rr=2πr
计算摆线{x=a(θ−sinθ)y=a(1−cosθ),θ∈[0,2π]\begin{dcases}x=a(\theta-\sin\theta) \\ y=a(1-\cos\theta)\end{dcases},\quad \theta\in[0,2\pi]{x=a(θ−sinθ)y=a(1−cosθ),θ∈[0,2π]的长度