高等数学A1 周维祺
形如p(x)/q(x)p(x)/q(x)p(x)/q(x),其中p,qp,qp,q是实系数多项式
若ppp的次数小于qqq的次数,称为真分式,例: (x+1)/(x2+1)(x+1)/(x^2+1)(x+1)/(x2+1)
否则称为假分式,例: (x2+1)/(x+1)(x^2+1)/(x+1)(x2+1)/(x+1)
x2+1x+3x−3 ) x3−2x2+0x−4‾x3−3x2+0x−4‾+x2+0x−4+x2−3x−4‾+3x−4+3x−9‾+5\begin{array}{r} x^2 + {\color{White}1}x + 3\\ x-3\ \overline{)\ x^3 - 2x^2 + 0x - 4}\\ \underline{x^3 - 3x^2 {\color{White} {} + 0x - 4}}\\ +x^2 + 0x {\color{White} {} - 4}\\ \underline{+x^2 - 3x {\color{White} {} - 4}}\\ +3x - 4\\ \underline{+3x - 9}\\ +5 \end{array}x2+1x+3x−3 ) x3−2x2+0x−4x3−3x2+0x−4+x2+0x−4+x2−3x−4+3x−4+3x−9+5
若p,qp,qp,q分别是n,mn,mn,m次实系数多项式,且n>mn>mn>m,q(x)q(x)q(x)不恒为000,则存在唯一的一对实系数多项式f,rf,rf,r,其中rrr的次数小于mmm,使得
p(x)=f(x)q(x)+r(x)p(x)=f(x)q(x)+r(x) p(x)=f(x)q(x)+r(x)
只需考虑真分式的积分
计算 ∫x+3x2−5x+6dx\int\frac{x+3}{x^2-5x+6}dx∫x2−5x+6x+3dx
设 x+3x2−5x+6=Ax−2+Bx−3\frac{x+3}{x^2-5x+6}=\frac{A}{x-2}+\frac{B}{x-3}x2−5x+6x+3=x−2A+x−3B
解得 x+3x2−5x+6=−5x−2+6x−3\frac{x+3}{x^2-5x+6}=\frac{-5}{x-2}+\frac{6}{x-3}x2−5x+6x+3=x−2−5+x−36
∫x+3x2−5x+6dx=−5ln∣x−2∣+6ln∣x−3∣+C\int\frac{x+3}{x^2-5x+6}dx=-5\ln|x-2|+6\ln|x-3|+C∫x2−5x+6x+3dx=−5ln∣x−2∣+6ln∣x−3∣+C
计算 ∫1x(x−1)2dx\int\frac{1}{x(x-1)^2}dx∫x(x−1)21dx
1x(x−1)2=1x+1(x−1)2−1x−1\frac{1}{x(x-1)^2}=\frac{1}{x}+\frac{1}{(x-1)^2}-\frac{1}{x-1}x(x−1)21=x1+(x−1)21−x−11
∫1x(x−1)2dx=ln∣x∣−1x−1−ln∣x−1∣+C\int\frac{1}{x(x-1)^2}dx=\ln|x|-\frac{1}{x-1}-\ln|x-1|+C∫x(x−1)21dx=ln∣x∣−x−11−ln∣x−1∣+C
计算 ∫x−2x2+2x+3dx\int\frac{x-2}{x^2+2x+3}dx∫x2+2x+3x−2dx
x−2x2+2x+3=122x+2x2+2x+3−31x2+2x+3\frac{x-2}{x^2+2x+3}=\frac{1}{2}\frac{2x+2}{x^2+2x+3}-3\frac{1}{x^2+2x+3}x2+2x+3x−2=21x2+2x+32x+2−3x2+2x+31
∫2x+2x2+2x+3dx=ln(x2+2x+3)+C\int\frac{2x+2}{x^2+2x+3}dx=\ln(x^2+2x+3)+C∫x2+2x+32x+2dx=ln(x2+2x+3)+C
∫1x2+2x+3dx=∫1(x+1)2+(2)2dx=12arctanx+12+C\int \frac{1}{x^2+2x+3}dx=\int \frac{1}{(x+1)^2+(\sqrt 2)^2}dx=\frac{1}{\sqrt{2}}\arctan\frac{x+1}{\sqrt 2}+C∫x2+2x+31dx=∫(x+1)2+(2)21dx=21arctan2x+1+C
转化为对数、分式或反正切的形式
计算以下不定积分
∫1(1+x)(1+x2)dx\int\frac{1}{(1+x)(1+x^2)}dx∫(1+x)(1+x2)1dx
∫1(1+2x)(1+x2)dx\int\frac{1}{(1+2x)(1+x^2)}dx∫(1+2x)(1+x2)1dx
∫1(1+x+x2)(1+x2)dx\int\frac{1}{(1+x+x^2)(1+x^2)}dx∫(1+x+x2)(1+x2)1dx
sinx=2sinx2cosx2=2tanx2sec2x2=2tanx21+tan2x2\sin x=2\sin\frac{x}{2}\cos\frac{x}{2}=\frac{2\tan\frac{x}{2}}{\sec^2\frac{x}{2}}=\frac{2\tan\frac{x}{2}}{1+\tan^2\frac{x}{2}} sinx=2sin2xcos2x=sec22x2tan2x=1+tan22x2tan2x
cosx=cos2x2−sin2x2=1−tan2x2sec2x2=1−tan2x21+tan2x2\cos x=\cos^2\frac{x}{2}-\sin^2\frac{x}{2}=\frac{1-\tan^2\frac{x}{2}}{\sec^2\frac{x}{2}}=\frac{1-\tan^2\frac{x}{2}}{1+\tan^2\frac{x}{2}} cosx=cos22x−sin22x=sec22x1−tan22x=1+tan22x1−tan22x
令u=tanx2u=\tan\frac{x}{2}u=tan2x,则x=2arctanux=2\arctan ux=2arctanu,从而
sinx=2u1+u2,cosx=1−u21+u2,dx=21+u2du\sin x=\frac{2u}{1+u^2},\quad \cos x=\frac{1-u^2}{1+u^2},\quad dx=\frac{2}{1+u^2}du sinx=1+u22u,cosx=1+u21−u2,dx=1+u22du
用万能代换计算 ∫1sin4xdx\int\frac{1}{\sin^4x}dx∫sin4x1dx
∫1sin4xdx=∫(1+u2)416u4⋅21+u2du=∫(1+u2)38u4du\int\frac{1}{\sin^4x}dx=\int\frac{(1+u^2)^4}{16u^4}\cdot\frac{2}{1+u^2}du=\int\frac{(1+u^2)^3}{8u^4}du∫sin4x1dx=∫16u4(1+u2)4⋅1+u22du=∫8u4(1+u2)3du
=∫1+3u2+3u4+u68u4du=18(−13u3−3u+3u+u33)+C=\int\frac{1+3u^2+3u^4+u^6}{8u^4}du=\frac{1}{8}(-\frac{1}{3u^3}-\frac{3}{u}+3u+\frac{u^3}{3})+C=∫8u41+3u2+3u4+u6du=81(−3u31−u3+3u+3u3)+C
u=tanx2u=\tan\frac{x}{2}u=tan2x代回上式
不用万能代换计算 ∫1sin4xdx\int\frac{1}{\sin^4x}dx∫sin4x1dx
∫1sin4xdx=∫csc2x(1+cot2x)dx\int\frac{1}{\sin^4x}dx=\int\csc^2x(1+\cot^2x)dx∫sin4x1dx=∫csc2x(1+cot2x)dx
∫csc2xdx=−cotx+C\int\csc^2xdx=-\cot x+C∫csc2xdx=−cotx+C
∫csc2xcot2xdx=−13cot3x+C\int\csc^2x\cot^2xdx=-\frac{1}{3}\cot^3 x+C∫csc2xcot2xdx=−31cot3x+C
写清步骤
∫sinx1+sinx+cosxdx\int\frac{\sin x}{1+\sin x+\cos x}dx∫1+sinx+cosxsinxdx
∫cotx1+sinxdx\int\frac{\cot x}{1+\sin x}dx∫1+sinxcotxdx
∫1(2+cosx)sinxdx\int\frac{1}{(2+\cos x)\sin x}dx∫(2+cosx)sinx1dx
计算 ∫11+x+23dx\int\frac{1}{1+\sqrt[3]{x+2}}dx∫1+3x+21dx
令t=x+23t=\sqrt[3]{x+2}t=3x+2,则x=t3−2x=t^3-2x=t3−2,从而dx=3t2dtdx=3t^2dtdx=3t2dt
∫11+x+23dx=∫3t21+tdt=3∫(t−1)+1t+1dt\int\frac{1}{1+\sqrt[3]{x+2}}dx=\int\frac{3t^2}{1+t}dt=3\int(t-1)+\frac{1}{t+1}dt∫1+3x+21dx=∫1+t3t2dt=3∫(t−1)+t+11dt
=3(t22−t+ln∣1+t∣)+C=3(\frac{t^2}{2}-t+\ln|1+t|)+C=3(2t2−t+ln∣1+t∣)+C,再将t=x+23t=\sqrt[3]{x+2}t=3x+2代回
计算 ∫1(1+x3)xdx\int\frac{1}{(1+\sqrt[3]{x})\sqrt x}dx∫(1+3x)x1dx
令t=x6t=\sqrt[6]{x}t=6x,则x=t6x=t^6x=t6,从而dx=6t5dtdx=6t^5dtdx=6t5dt
∫1(1+x3)xdx=∫6t5(1+t2)t3dt=6∫t21+t2dt=6∫(1−11+t2)dt\int\frac{1}{(1+\sqrt[3]{x})\sqrt x}dx=\int\frac{6t^5}{(1+t^2)t^3}dt=6\int\frac{t^2}{1+t^2}dt=6\int(1-\frac{1}{1+t^2})dt∫(1+3x)x1dx=∫(1+t2)t36t5dt=6∫1+t2t2dt=6∫(1−1+t21)dt
=6t−arctant+C=6t-\arctan t+C=6t−arctant+C,再将t=x6t=\sqrt[6]{x}t=6x代回
∫11+x+1+x3dx\int\frac{1}{\sqrt{1+x}+\sqrt[3]{1+x}}dx∫1+x+31+x1dx
∫1x1+xxdx\int\frac{1}{x}\sqrt{\frac{1+x}{x}}dx∫x1x1+xdx
∫x3x+1+2x+1dx\int\frac{x}{\sqrt{3x+1}+\sqrt{2x+1}}dx∫3x+1+2x+1xdx