e的有理逼近
$\sqrt2$可以写成无限连分数的形式
$$\sqrt{2} = 1 + \dfrac{1}{2 + \dfrac{1}{2 + \dfrac{1}{2 + \dfrac{1}{2 + \ldots}}}}.$$
这个无限连分数可以简记为$\sqrt{2} = [1;(2)]$,其中括号内的部分是循环节。类似地,$\sqrt{23} = [4;(1,3,1,8)]$。
截取其连分数表示的前n项,就得到一系列有理逼近值,例如:
\begin{align*}
& 1 + \dfrac{1}{2} = \dfrac{3}{2} \\
& 1 + \dfrac{1}{2 + \dfrac{1}{2}} = \dfrac{7}{5}\\
& 1 + \dfrac{1}{2 + \dfrac{1}{2 + \dfrac{1}{2}}} = \dfrac{17}{12}\\
& 1 + \dfrac{1}{2 + \dfrac{1}{2 + \dfrac{1}{2 + \dfrac{1}{2}}}} = \dfrac{41}{29},
\end{align*}
$\sqrt2$的前十个逼近值依次是
$$1, \dfrac{3}{2}, \dfrac{7}{5}, \dfrac{17}{12}, \dfrac{41}{29}, \dfrac{99}{70}, \dfrac{239}{169}, \dfrac{577}{408}, \dfrac{1393}{985}, \dfrac{3363}{2378}, \ldots,$$
e有如下连分数表示 $e = [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, … , 1, 2k, 1, …]$,其前十个逼近值为
$$2, 3, \dfrac{8}{3}, \dfrac{11}{4}, \dfrac{19}{7}, \dfrac{87}{32}, \dfrac{106}{39}, \dfrac{193}{71}, \dfrac{1264}{465}, \dfrac{1457}{536}, \ldots,$$
其中第十个逼近值的分子各位数字之和为$1+4+5+7=17$。
求e的第100个逼近值的分子各位数字之和。
本题难度:
解答
查OEIS A007676 可得第100个逼近值的分子是6963524437876961749120273824619538346438023188214475670667,因此结果是$272$。
附:程序实现
target=100
e=[1 if i%3 < 2 else (i/3+1)*2 for i in range(target)]
e[0]=2
a=e[target-1]
b=1
for i in range(target-2,-1,-1):
a,b=e[i]*a+b,a
print a,b,sum([int(i) for i in str(a)])