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Abstract
This paper addresses the link between the characterization of spectral sets for orthog-
onal Fourier bases in Z

2
n and for discrete orthogonal Gabor bases in Z

2
n . For Fourier

bases there is a well known conjecture (i.e., the Fuglede conjecture) which states that a
set is spectral if and only if it is a tile. This conjecture has been disproved for d ≥ 3 (d
for dimension) and remains open for d = 1, 2. A similar but stricter characterization
for discrete orthogonal Gabor bases is conjectured here, which states that the support
set shall not only be tiling but also either a subgroup of order n (i.e., a Lagrangian)
or a tiling complement of such a subgroup. The additional requirement comes from
restrictions on the window vector. The author has established this statement (in both
directions) before for n being a prime number, the purpose of this paper is to extend
this result to n being a prime square. As opposed to possible false first impressions,
this is not a simple extension of the prime case, and actually relies heavily on several
new techniques.

Keywords Discrete Gabor systems · Fuglede conjecture · Finite Heisenberg group ·
Symplectic modules

Mathematics Subject Classification 42A99 · 47G30

1 Introduction

Definition 1.1 A multiset is a collection of elements in which elements are allowed
to be repeated. A simple set (i.e., a set in the usual sense) is then a special case of
multisets in which every element has multiplicity 1.

Sets in this article are simple by default, multisets will only be used after specifi-
cations.
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Let A, B be subsets of an additive finite Abelian group G, we use A + B for the
multiset formed by elements of form a + b where a, b are enumerated from A, B
respectively. We write A ⊕ B if A + B is actually a simple set, and in such case we
may also say that A, B are tiling complements of each other in A ⊕ B.

Let

Zn = {0, 1, . . . , n − 1}, ̂Zn =
{

0,
1

n
, . . . ,

n − 1

n

}

,

respectively be the additive cyclic group of n elements and its dual, Zn is isomorphic
to ̂Zn under the map d �→ d/n (d ∈ Zn). To better distinguish them, we will always
use the hat symbol when talking about subsets in ̂Zn, i.e., if S ⊆ Zn, then ̂S = {s/n :
s ∈ S}. We take ̂Zn × Zn = ̂Zn × ̂Zn, and will follow this convention consistently. If
x, y ∈ R

d , then we denote the Euclidean inner product of x, y by x · y.
Definition 1.2 A subset A is said to be a tiling set (or a tile) in an additive finite Abelian
group G, if there exists another subset B of G so that A ⊕ B = G (i.e., each element
g ∈ G can be uniquely decomposed as g = a + b with a ∈ A and b ∈ B). In such
case we shall call (A, B) a tiling pair in G.

A subset A is said to be spectral in Zn ×Zn, if there is somêS ⊆ ̂Zn ×̂Zn such that
{e2π i ŝ·x }ŝ∈̂S is an orthogonal bases on L2(A) with respect to the counting measure.
In such case we shall call (A,̂S) a (Euclidean) spectral pair in Zn × Zn . A famous
and central problem concerning spectral sets and tiling sets is the Fuglede conjecture
[10], which says that a set in R

d is spectral (in R
d ) if and only if it is a tile (in R

d ).
Fuglede proved the statement for fundamental domains of lattices, and also showed
that disks and triangles are not spectral. The conjecture is true for convex regions on
all dimensions [31], but it is false in both directions for d ≥ 3, see e.g. [9, 22, 23, 34,
45]. For lower dimensions it remains open.

An effective strategy for attacking this problem in R
d is to try to reduce it to finite

Abelian groups. Counterexamples mentioned above in R
d for d ≥ 3 are constructed

via complex Hadamard matrices which arise from different tiling sets and spectral
sets in finite Abelian groups. Standard statements as in [34, Proposition 2.1, Proposi-
tion 2.5] and [23, Theorem 4.1, Theorem 4.2] indicate that positivity of the conjecture
in R

d always imply positivity of the conjecture in finite Abelian groups generated
by d elements. The other direction is only established partially, the case of d = 1 is
elaborated in [6, Theorem 1.3, Theorem 3.2] using rationality and periodicity results
in [16, 21, 27], while for d = 2 even periodicity is only known onZ

2 and on particular
domains, see [2, 13, 14, 19, 35, 47]. Various results are available in finite Abelian
groups with at most two generators, see e.g. [4, 7, 8, 18, 20, 24, 25, 28, 33, 41, 43, 44,
48, 49].

In this paper we formulate (and partially prove) the following characterization of
orthogonal discrete Gabor bases that links its orthogonality to the tiling property of
its support set, which gives the statement the same flavour of the Fuglede conjecture
(but in a more restrictive way). To get started, a few concepts and notions shall be
introduced first:
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Definition 1.3 Letω = e2π i/n be a primitiven-th root of unity, and (c1, . . . , cn)T ∈ C
n

(the symbol T in the superscript means transpose). The discrete translation operator
T and the discrete modulation operator M on C

n are respectively

T : (c1, . . . , cn)
T �→ (cn, c1, . . . , cn−1)

T ;
M : (c1, . . . , cn)

T �→ (c1, ωc2 . . . , ωn−1cn)
T ,

and a discrete time-frequency shift is denoted by

π( j, k) = M jT k, π∗( j, k) = T−kM− j . (1.1)

Let I be the identity operator on C
n, since T n = Mn = I , it is natural to consider

π( j, k) as induced by elements ( j, k) ∈ Zn × Zn and use the notation π(H) for the
set of all discrete time-frequency shifts induced by H ⊆ Zn × Zn . Moreover, as

MT = ωT M, (1.2)

{ω, M, T } generates a representation of the finiteHeisenberg group. It is also important
to be aware that π(Zn × Zn) is not a representation of Zn × Zn .

Definition 1.4 A discrete Gabor system on C
n consists of a support set S ⊆ Zn × Zn

and a window vector 	c ∈ C
n, it is defined and denoted by

G(S, 	c) = {π(s)	c : s ∈ S ⊆ Zn × Zn, 	c ∈ C
n}.

The notation GS(	c) will be used for the matrix formed by taking G(S, 	c) as its
column vectors, the ordering of columns does not matter in this article.

Example 1.1 If 	c = (1, 0, . . . , 0)T , and S = {0} × Zn, then G(S, 	c) is the Euclidean
basis; Alternatively if 	c = n−1/2(1, . . . , 1)T , and S = Zn × {0}, then G(S, 	c) is the
Fourier basis. They are both orthonormal bases on C

n .

Gabor systems [11] in L2(Rn) is a fundamental object in Gabor analysis, discrete
Gabor systems [37, 38] are relatively new tools that can be viewed as counterparts of
continuous Gabor systems. The exposition in [36] gives a good overview of them. A
remarkable property is the full sparkness of such systems [30, 32].

Definition 1.5 Let S ⊆ Zn × Zn, we shall call S a discrete Gabor tile if it is either an
ordern subgroup (i.e., a Lagrangian, seeLemma2.2 below), or is the tiling complement
of an order n subgroup. If G(S, 	c) is actually an orthonormal system, then we shall
call 	c a discrete Gabor spectrum of S.

It is clear that any orthogonal system G(S, 	c) can be turned into orthonormal by
a scaling on 	c, thus there is no harm by restricting ourselves to orthonormal systems
only. It is also worth mentioning that CAZAC sequences [1] can be constructed out
of such systems.

The author showed in [50] that
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Theorem 1.1 If S ⊆ Zn × Zn is a discrete Gabor tile, then it has a discrete Gabor
spectrum. If n is a prime number, then the converse (i.e., if S has a Gabor spectrum,

then it is a discrete Gabor tile) is also true.

The converse part for composite n is also conjectured but still seems to be difficult
to prove. The statement of the theorem is very similar to the Fuglede conjecture even
though the author is not able to provide a good reason for that at the moment. The
tiling condition is stricter than the Fuglede conjecture, probably due to the fact that
there is a stronger interaction between S and 	c (see Sect. 3.2 below).

There is a related research in [17] where discrete orthonormal Gabor systems on
finite prime fields Z

d
p are studied. The essential difference between the theorem above

and the result in [17], aside from the obvious part on the domain of the window vector
(Zn × Zn vs. Z

d
p), is that in [17] it is assumed that the support set decomposes into

S = A× B, where A is the support of the shift operator T and B is the support of the
modulation operator M . We do not have such a restriction on S here in our theorem.

An analogous statement for continuous Gabor systems is to ask, for which set of
translations and modulations can one find a window function g so that together they
form an orthonormal Gabor bases. This is complicated even for simple g [12], see also
[5, 26] and references therein.

Themain purpose of this article is to establish the converse part of the above theorem
for n being a prime square. As opposed to possible false first impressions, this is not a
simple extension of the prime case, but requires much insights into structures of tiling
sets and window vectors. We used symplectic methods to analyze the zero set of the
characteristic polynomial (also called the mask polynomial in some literature) of S.

The study of zero sets is a standard approach in the research of the Fuglede conjecture,
but the application of symplectomorphisms is a new technique, it allows us to apply
coordinate transforms for reductions.

2 Preliminaries

2.1 Symplectic tiling/spectral pairs

Let S be a subset of an additive Abelian group G, denote the difference set of S by

�S = {s − s′ : s, s′ ∈ S, s �= s′}.

Let A, B be subsets of an additive Abelian group G. Clearly A + B = A ⊕ B if
and only if the map

(a, b) �→ a + b, a ∈ A, b ∈ B,

is injective. This map is not injective if and only if there exist distinct a, a′ ∈ A and
b, b′ ∈ B with a + b = a′ + b′, i.e., a − a′ = b′ − b, which means

A + B = A ⊕ B ⇔ �A ∩ �B = ∅. (2.1)
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Definition 2.1 For ( j, k), ( j ′, k′) ∈ R
2,define the following symplectic bilinear form:

〈( j, k), ( j ′, k′)〉s = jk′ − k j ′.

Let A ⊆ Zn × Zn, and ̂S ⊆ ̂Zn × ̂Zn, we shall call (A,̂S) a symplectic spectral
pair in Zn × Zn, if {e2π i〈x,s〉s }s∈̂S is an orthogonal bases on L2(A) with respect to the
counting measure. ̂S is then called the symplectic spectrum of A in such case.

If s = (s1, s2), s′ = (s2,−s1), x = (x1, x2) and

S′ = {(s2,−s1) : (s1, s2) ∈ ̂S ⊆ ̂Zn × ̂Zn},

then ̂S → S′ is a bijective map, and

〈x, s〉s = x1s2 − x2s1 = x · s′,

which shows that (A,̂S) is a symplectic spectral pair if and only if (A, S′) is aEuclidean
spectral pair.

Given a function f , define its zero set to be

Z( f ) = {t : f (t) = 0}.

Let A be a multiset with elements from Zn × Zn, and set

FA(s) =
∑

a∈A

e2π i〈a,s〉s , s ∈ R
2.

If A is actually a simple set (i.e., a set in the usual sense), then it is easy to see that
(A,̂S) is a symplectic spectral pair inZn ×Zn if and only if (S, ̂A) is also a symplectic
spectral pair in Zn × Zn, which is equivalent to the condition that

�̂S ⊆ Z(FA), |A| = |̂S|. (2.2)

Moreover, if we set z = e2π i/n and consider s ∈ ̂Zn × ̂Zn, then FA(s) is just a
univariate polynomial of z with positive coefficients. On the other hand, it would be
convenient to also consider FA as induced by the polynomial

F̃A(x, y) =
∑

(a1,a2)∈A

xa1 ya2 ,

so that if s = (s1, s2) then

FA(s) = F̃A(e2π is2 , e−2π is1),

and

FA(0, 0) = F̃A(1, 1) = |A|.
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Consequently if A, B ⊆ Zn × Zn, then (A, B) being a tiling pair is equivalent to

�(̂Zn × ̂Zn) ⊆ Z(FA) ∪ Z(FB), |A| · |B| = n2. (2.3)

2.2 Symplectic basis

Definition 2.2 Given A ⊆ Zn × Zn, let

A⊥ = {h ∈ Zn × Zn : 〈a, h〉s = 0,∀a ∈ A}.

A is called isotropic if A ⊆ A⊥ and Lagrangian if A = A⊥.

A⊥ is important since π(A⊥) is precisely the set that commutates with π(A) (see
Eq. (2.5) below). We use gcd(a, b) for the greatest common divisor of a and b.

Lemma 2.1 {h, h′} is a pair of generators of Zn × Zn if and only if

gcd(〈h, h′〉s, n) = 1.

Proof For any element h = ( j, k) ∈ Zn × Zn, we have

gcd( j, k) = n

ord(h)
,

where ord(h) is the order of h in Zn × Zn (the smallest natural number m such that
h + · · · + h
︸ ︷︷ ︸

m items

= 0).

If ord(h) = n, i.e., gcd( j, k) = 1, then the Bézout identity shows that the solution
to

j y − kx = 0

in Z is precisely (x, y) = d( j, k) for any d ∈ Z. Consequently it has exactly n
solutions in Zn × Zn, i.e., {h}⊥ is the cyclic subgroup generated by h.

Now if h, h′ is a pair of generators of Zn × Zn, then ord(h) = ord(h′) = n, and
cyclic subgroups generated by h and h′ intersect trivially. Suppose gcd(〈h, h′〉s, n) =
d �= 1, then taking c = n/d and b = 〈h, h′〉s/d we get

〈h, ch′〉s ≡ c〈h, h′〉s ≡ cdb ≡ nb ≡ 0 (mod n),

which is impossible since ch′ is not in the cyclic subgroup generated by h.

Conversely if h, h′ ∈ Zn × Zn satisfy gcd(〈h, h′〉s, n) = 1, then there is some
k ∈ N that is co-prime to n such that

k〈h, h′〉s ≡ 1 (mod n),
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consequently

ord(h) ≡ ord(h)k〈h, h′〉s ≡ k〈ord(h)h, h′〉s ≡ k〈0, h′〉s ≡ 0 (mod n),

and

ord(h′) ≡ ord(h′)k〈h, h′〉s ≡ k〈h, ord(h)h′〉s ≡ k〈h, 0〉s ≡ 0 (mod n),

which shows (since gcd(k, n) = 1) that

ord(h) = ord(h′) = n.

Thus they each generate a maximal cyclic subgroup. Let H , H ′ be maximal cyclic
subgroups generated by h, h′ respectively, and suppose ah ∈ H ′, then we have

0 ≡ k〈ah, h′〉s ≡ ak〈h, h′〉s ≡ a (mod n),

which implies a ≡ 0 mod n, i.e., H , H ′ intersect trivially, consequently h, h′ generate
the full group Zn × Zn . ��
Lemma 2.2 H ⊂ Zn × Zn is a Lagrangian if and only if H is an order n subgroup.

Proof First consider an arbitrary subset H inZn×Zn .Observe that 0 ∈ H⊥,moreover,
by the bilinearity of the symplectic form we have that h ∈ H⊥ implies −h ∈ H⊥,

and h, h′ ∈ H⊥ implies h + h′ ∈ H⊥, therefore H⊥ is a subgroup. Consequently
Lagrangians must always be subgroups.

It then follows from the proof (the second paragraph in the proof) of Lemma 2.1
that cyclic Lagrangians are precisely maximal cyclic subgroups.

Now let h, h′ be a pair of generator of Zn × Zn, and consider the subgroup H
generated by ah, bh′. By Lemma 2.1 we see that n divides ab if and only if

0 ≡ 〈ah, bh′〉s ≡ ab〈h, h〉s (mod n).

Therefore if ab = dn for some d > 1, then let a = a′d1, b = b′d2 with d1d2 = d,

clearly at least one of d1, d2 is greater than 1, say d1 > 1 without loss of generality,
then we have 〈a′h, ah〉s = 0 and

〈a′h, bh′〉s ≡ ab

d1
〈h, h′〉s ≡ dn

d1
〈h, h′〉s ≡ d2n〈h, h′〉s ≡ 0 (mod n).

Therefore H⊥ contains the subgroup generated by a′h and bh′, which makes it larger
than, instead of equal to, H . Consequently H = H⊥ (i.e., H is a Lagrangian) if and
only if ab = n, in which case the order of H is

n

a
· n
b

= n.

��
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Definition 2.3 {h, h′} is said to be a symplectic basis of Zn × Zn if 〈h, h′〉s = 1.

Definition 2.4 ψ is said to be a symplectomorphism on Zn × Zn if it keeps the sym-
plectic form 〈·, ·〉s invariant, i.e.,

〈h, h′〉s = 〈ψ(h), ψ(h′)〉s,

holds for any h, h′ ∈ Zn × Zn .

Lemma 2.1 shows that if {h, h′} is a symplectic basis, then they generate a tiling
pair of cyclic Lagrangians in Zn × Zn, therefore symplectomorphism are not only
just change of symplectic basis but also group automorphisms. On the other hand,
Lemma 2.3 below shows conversely that if H is a cyclic Lagrangian with generator h,

then in each cyclic Lagrangian H ′ that intersects H trivially (which makes H ′ a tiling
complement of H ) one can always find some h′ so that {h, h′} is a symplectic basis.
Thus by switching to the standard basis using proper symplectomorphisms (which
changes neither tilingness nor spectrality), we are able to reduce the amount of cases
to be analyzed. In contrast, such tools are not available with Euclidean inner products,
since a tiling pair of cyclic Lagrangians need not contain a pair of orthogonal Euclidean
basis.

Lemma 2.3 If H , H ′ are cyclic Lagrangians such that Zn ×Zn = H ⊕H ′, then there
exists a symplectomorphism ψ with

ψ(H) = Zn × {0}, ψ(H ′) = {0} × Zn . (2.4)

Proof Let h be a generator of H , and h′ a generator of H ′. If a = 〈h, h′〉s, then by
Lemma 2.1 we have gcd(a, n) = 1, hence a is an element of the multiplicative group
modulo n. Let a−1 be the inverse of a in the multiplicative group modulo n, clearly
gcd(a−1, n) = 1 since a−1 is also a member of the multiplicative group modulo n,

consequently a−1h′ is still a generator of H ′. Moreover, we have

〈h, a−1h′〉s ≡ a−1〈h, h′〉s ≡ a−1 · a ≡ 1 (mod n),

which shows that {h, a−1h′} is a symplectic basis. Now we take ψ to be the group
automorphism on Zn × Zn that maps h to (1, 0) and a−1h′ to (0, 1), then Eq. (2.4)
is satisfied. ψ is also a symplectomorphism since it is linear and maps the symplectic
basis {h, a−1h′} to the symplectic basis {(1, 0), (0, 1)}. ��

It is clear that

FA(ŝ) = Fψ(A)

(

ψ̂(s)
)

,

holds for any symplectomorphismψ, subsets A ⊆ Zn×Zn, and element ŝ ∈ ̂Zn×̂Zn .

Therefore Eqs. (2.2) and (2.3) must hold or break simultaneously on A and ψ(A),

thus A is a tiling set (resp. a spectral set) in Zn × Zn if and only ψ(A) is also a tiling
set (resp. a spectral set) in Zn × Zn .
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2.3 Annihilation and complementation

For each m ∈ N, let �m(x) be the m-th cyclotomic polynomial (i.e., �m(x) =
∏

i (x − ζi ) where ζi runs over all m-th primitive roots of unity).

Lemma 2.4 Let A ⊆ Zn × Zn and ĥ, ĥ′ ∈ ̂Zn × ̂Zn, if ĥ, ĥ′ generates the same cyclic
subgroup, then ĥ ∈ Z(FA) implies ĥ′ ∈ Z(FA).

Proof Let m be the order of ĥ in ̂Zn × ̂Zn and ̂H the cyclic subgroup generated by
ĥ. Since both ĥ and ĥ′ are generators of ̂H , we must have ĥ′ = bĥ for some b with
gcd(b,m) = 1. If we set z = e2π i/m, then FA(ĥ) is a polynomial of z divisible by
�m(z), which we write as f A(z), then we have

FA(ĥ′) = FA(bĥ) = f A(zb) = 0,

therefore all generators of ̂H are contained in Z(FA). ��
Lemma 2.5 If H is a subgroup in Zn × Zn, then

(̂Zn × ̂Zn) ∩ Z(FH ) = ̂Zn × ̂Zn \ Ĥ⊥.

Proof There are two cases:

• H is cyclic: By Lemma 2.3 it suffices to consider H generated by (a, 0) for some
a ∈ Zn, other cases will follow by applying a proper symplectomorphism. Let
b = n/a, and H ′ = {0} × bZa, the cyclic subgroup generated by (0, b), notice
that

H⊥ = Zn × bZa = (Zn × {0}) ⊕ H ′.

Thus if ŝ ∈ ̂H⊥, then

FH (ŝ) = |H | �= 0,

while if ŝ ∈ ̂Zn × ̂Zn \ ̂H⊥, then it can be written as ŝ = ( j/n, k/n) for some
j ∈ Zn and k ∈ Zn \ bZa, consequently

FH (ŝ) =
b−1
∑

t=0

e2π i
kta
n =

b−1
∑

t=0

e2π i
kt
b = 0,

which shows that ̂Zn × ̂Zn \ ̂H⊥ = Z(FH ) ∩ (̂Zn × ̂Zn).

• H is not cyclic: Again by Lemma 2.3 it suffices to consider H generated by
(a, 0) and (0, b) for some a, b ∈ Zn, other cases will follow by applying a proper
symplectomorphism. Let A, B denote cyclic subgroups generated by (a, 0) and
(0, b) respectively, then H = A ⊕ B and thus

H⊥ = A⊥ ∩ B⊥, Z(FH ) = Z(FA) ∪ Z(FB),
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the result then follows from the cyclic case.

��
Lemma 2.6 Let H be a subgroup inZn×Zn, then C ⊆ Zn×Zn is a tiling complement
of H in Zn × Zn if and only if |C | = n/|H | and

�̂H⊥ ⊆ Z(FC ).

Proof Combine Eq. (2.3) and Lemma 2.5. ��

2.4 Centralizer and projector

Equip the matrix space C
n×n with the inner product

〈A, B〉 = tr(AB∗), A, B ∈ C
n×n,

where tr is the trace and B∗ is the adjoint of B. With this setting it is easy to verify
that n−1/2π(Zn × Zn) is an orthonormal basis for C

n×n .

For an element g ∈ Zn × Zn, let

Pg A = π(g)Aπ∗(g), A ∈ C
n×n,

be the simultaneous conjugation by π(g). Similarly for a subset S ⊆ Zn × Zn, let

PS A = 1

|S|
∑

s∈S
Ps A, A ∈ C

n×n .

These operators commute, i.e., PS PH = PH PS for any two subsets S, H ⊆ Zn × Zn .

It follows from Eq. (1.2) that

π(h)π(h′) = ω〈h,h′〉sπ(h′)π(h), (2.5)

which shows that π(S⊥) is the centralizer of π(S), more importantly Eq. (2.5) leads
to

PSπ(h) = 1

|S| FS(ĥ)π(h). (2.6)

Corollary 2.1 Let H � Zn × Zn be a subgroup, then PH is the orthogonal projection
onto the span of π(H⊥).

Proof Combine Eq. (2.6) with Lemma 2.5. ��
For a vector 	c ∈ C

n let

P	c = 	c	c∗,
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be the (scaled) projector onto the span of 	c.
The frame operator of a discrete Gabor system G(S, 	c) is then simply

GS(	c)G∗
S(	c) = |S|PS P	c.

Moreover, by looking at the Gram matrix G∗
S(	c)GS(	c) we can easily see that

G(S, 	c) is an orthogonal system ⇔ P	c ⊥ π(�S). (2.7)

For a vector 	c ∈ C
n, set

Z(P	c) = {h ∈ Zn × Zn : 〈P	c, π(h)〉 = 0},

and

supp(P	c) = {h ∈ Zn × Zn : 〈P	c, π(h)〉 �= 0}.

Lemma 2.7 If H�Zn×Zn is a Lagrangian, V is a unitary matrix that simultaneously
diagonalizes π(H), and 	c is a column in V , then supp(P	c) ⊆ H .

Proof Each element in π(H) is unitary, thus normal and can be diagonalized. H
being Lagrangian implies that elements in π(H) mutually commute, therefore they
can indeed be simultaneously diagonalized. Since they are linearly independent, their
spectrums (viewed as vectors) are also linearly independent and thus form a basis of
C
n .Consequently there exists linear combinations of them that producesmatrices with

spectrums (1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, . . . , 0, 1), each of which is an instance
of P	c. ��
Lemma 2.8 Let S ⊆ Zn × Zn, 	c ∈ C

n, if G(S, 	c) is an orthonormal basis of C
n, then

we have

̂supp(P	c) \ {(0, 0)} ⊆ Z(FS).

Conversely if h ∈ Zn × Zn \ {(0, 0)} and ĥ /∈ Z(FS), then

h ∈ Z(P	c).

Proof If G(S, 	c) is an orthonormal basis of C
n, then GS(	c) is unitary and we have for

its frame operator that

nPS P	c = GS(	c)G∗
S(	c) = I ,

Take a cyclic Lagrangian H�Zn×Zn and let h be its generator, then by Corollary 2.1,
PH is the orthogonal projection onto the span of π(H), thus

I = nPH PS P	c = nPS PH P	c
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= nPS

(

n−1
∑

k=0

ckπ(kh)

)

= I + n
n−1
∑

k=1

ck PSπ(hk).

where ck = 〈P	c, π(kh)〉/n. Therefore for the equation to hold ck has to be 0 if
PSπ(kh) �= 0, similarly PSπ(kh) has to be 0 if ck �= 0, and this is valid for all cyclic
Lagrangians (which jointly coverZn×Zn), thus the conclusion follows fromEq. (2.6).

��
It is shown in [30, 32] that if S is an order n subset in Zn × Zn, then the set of

vectors 	c that makes G(S, 	c) a basis of C
n is open dense in C

n . Below is a shorter
proof for the particular case when S is a Lagrangian, in the proof such window vectors
are also characterized.

Lemma 2.9 For a Lagrangian H � Zn × Zn, let V be a unitary matrix that simulta-
neously diagonalizes π(H), then G(H , 	c) has rank m if and only if 	c is orthogonal to
precisely n − m columns in V .

Proof Denote the k-th column in V by 	vk . Suppose

	c =
n

∑

k=1

ck 	vk,

and the simultaneous diagonalization of elements in π(H) is

π(h) = V DhV
∗, h ∈ H .

Write D	c = diag(c1, . . . , cn), and 	d(h) the vectorization of Dh so that

Dh = diag(d(h)).

With these notations we have

π(h)	c = V DhV
∗V

⎛

⎜

⎝

c1
...

ck

⎞

⎟

⎠ = V Dh

⎛

⎜

⎝

c1
...

ck

⎞

⎟

⎠ = V D	c 	d(h).

Now enumerate elements in H as h1, . . . , hn, then

V ∗GH (	c) = D	c
( 	d(h1), 	d(h2), . . . , 	d(hn)

)

. (2.8)

Clearly { 	d(h)}h∈H is a linearly independent set since elements in π(H) are mutually
orthogonal in C

n×n, thus the rank of GH (	c) equals the number of non-zero entries in
c1, . . . , cn, which is the desired result. ��
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In particular, G(H , 	c) is a basis of C
n if and only if 	c is not orthogonal to any

column in V .

3 Structures in Zp2 × Zp2

3.1 A counting lemma

Given a prime number p, let us recall the structure of Zp2 × Zp2 and agree on the
following notations: The unique subgroup formed by all order p elements will be
denoted by K . Counting the number of generators, it is easy to see that there are p+1
number of proper and non-trivial subgroups in K , each of them is cyclic and they
mutually intersect trivially. The subgroup generated by (ap, bp) ∈ K will be denoted
by Kb/a (with the convention b/a = ∞ if a = 0) so that K0, K1, . . . , Kp−1, K∞
is the list of all proper, non-trivial subgroups in K . Similar arguments indicate that
there are p2 + p cyclic Lagrangians in Zp2 × Zp2 , we will denote them by Hj,k with
j ∈ Zp, k ∈ {0, 1, . . . , p − 1,∞}, where Hj,k is generated by

h j,k =
{

(1, j p + k) k ∈ {0, 1, . . . , p − 1},
( j p, 1) k = ∞.

We shall call {0, 1, . . . , p− 1,∞} the index set in the rest part of this paper, and with
these notations we have

Hj,k ∩ Hj ′,k′ =
{

∅ if k �= k′,
Kk if k = k′.

For each k ∈ {0, 1, . . . , p − 1,∞}, we shall write

Hk =
⋃

j∈Zp

Hj,k ∪ K = K⊥
k ,

and further use

K̃k = �Kk, H̃ j,k = Hj,k \ Kk,

as the set of all generators in Kk, Hj,k respectively. For convenience we also take

H̃k =
⋃

j∈Zp

H̃ j,k .

The following two picturesmay help to build intuitions behind these notations (Figs. 1,
2).
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H0,0 H1,0 H0,1 H1,1 H0,∞ H1,∞ K

Fig. 1 Lagrangians in Z4 × Z4

K0 H̃0 K1 H̃1 K∞ H̃∞

Fig. 2 Kk and H̃k in Z4 × Z4

Lemma 3.1 Let p be a prime number and A a subset of Zp2 × Zp2 that contains the
identity element. If for some j ∈ Zp and some k ∈ {0, 1, . . . , p − 1,∞} we have that
ĥ ∈ ̂̃Hj,k is in Z(FA), then

|A ∩ Hk | = p|A ∩ Hj,k |.

Proof Let z = e2π i/ ord(ĥ), then we have

0 = FA(ĥ) =
∑

a∈A

z〈a,h〉s = f (z)�ord(ĥ)
(z)

for some polynomial f . It is subtle but important to realize that since ord(h) is a
prime power it is actually possible to have all coefficients of f positive (see [29,
Theorem 3.3(1)]), and to have its order bounded by p since z p�p2(z) = �p2(z) if

z p
2 = 1 and similarly z p�p(z) = �p(z) if z p = 1. Now A containing the identity

element implies that the lowest order term in g is the constant term, which we denote
by d.

If 〈a, h〉s ∈ pZp \ {0}, then we have

0 ≡ p〈a, h〉s ≡ 〈a, ph〉s (mod p2),

which means all terms in �p2(z) is obtained from a ∈ A∩ K⊥
k since ph ∈ Kk . Recall

that K⊥
k = Hk, and 〈a, h〉s = 0 for all a ∈ Hj,k, we must then have

d = |A ∩ Hj,k |,

and thus

|A ∩ Hk | = d|�p2(1)| = p|A ∩ Hj,k |.
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��

3.2 Support of window vectors

Let ζ = e2π i/p, and {	u( j)} j∈Zp , {	e( j)} j∈Zp be respectively the Fourier basis and the
Euclidean basis on C

p. Let ⊗ be the matrix Kronecker product. It is verifiable by
straightforward computation that the set of vectors {	u(a) ⊗ 	e(b)}a,b∈Zp simultaneously
diagonalize π(K ) with corresponding eigenvalues being

π(pj, pk)(	u(a) ⊗ 	e(b)) = ζ bj−ak(	u(a) ⊗ 	e(b)), (3.1)

for each ( j, k) ∈ Zp × Zp.

Lemma 3.2 Let p be a prime number, and a, b distinct elements from the index set
{0, 1, . . . , p − 1,∞}. If 	c ∈ C

p2 satisfies

P	c ⊥ π(H̃a ∪ K̃b), (3.2)

then we will have

P	c ⊥ π(K̃a).

Proof By Lemma 2.3 it suffices to show for the case of a = 0 and b = ∞, all other
cases can be reduced to this one upon a proper symplectomorphism.

Consider first the Gabor system G(K0, 	c) and its frame operator pPK0 P	c, clearly
its rank is at most p since there are only p vectors in G(K0, 	c). On the other hand, by
Corollary 2.1, PK is the orthogonal projection onto the span of π(K ), and PK0 is the
orthogonal projection onto the span of π(K⊥

0 ), but

K⊥
0 = K∞ ⊕ H0,0 = K ∪ H̃0,

thus Eq. (3.2) actually implies

PK0 P	c = PK P	c,

i.e., the rank of G(K , 	c) equals the rank of G(K0, 	c), which is at most p since there
are only p elements in G(K0, 	c). On the other hand, Eq. (3.2) shows that the rank
of G(K , 	c) is at least p since it contains G(K∞, 	c), which by Eq. (2.7) consists of
p number of mutually orthogonal vectors. Therefore the ranks of both G(K0, 	c) and
G(K , 	c) are precisely p.

Now we expand 	c with respect to eigenvectors of K as prescribed in Eq. (3.1):

	c =
∑

a,b∈Zp

ca,b 	u(a) ⊗ 	e(b). (3.3)



   51 Page 16 of 21 W. Zhou

By Lemma 2.9, the rank of G(K , 	c) being p means that there are precisely p non-zero
coefficients ca,b in the expansion equation (3.3).

Let 	x be the p-dimensional vector whose b-th (b starts from 0) element xb is given
by

xb =
∑

a∈Zp

|ca,b|2,

The condition that P	c ⊥ π(K̃∞) in Eq. (3.2) implies that for each t ∈ {1, 2, . . . , p−
1} we have

0 = 〈π(0, tp)	c, 	c〉,

which means 	x is orthogonal to all p-dimensional Fourier basis except (1, 1, . . . , 1)T .

Consequently we get

x0 = x1 = · · · = xp−1.

which means that for each b ∈ Zp there is precisely one non-zero entry in the set
{c0,b, c1,b, . . . , cp−1,b} and their moduli are same.

Now let uswriteGK (	c) the sameway as in equation (2.8), and look at its sub-matrix

GK0(	c) = V D	c
( 	d(0), 	d(1), . . . , 	d(p−1)

)

,

where as in Eq. (2.8), V is a matrix that simultaneously diagonalizes all members in
π(K ), D	c is the diagonal matrix with ca,b inscribed on its main diagonals and 	d(a) is
vectorization of the spectrum of π(a, 0).

Recall that the rank of GK0(	c) is p and the rank of V is p2, hence the rank
of D	c

( 	d(0), 	d(1), . . . , 	d(p−1)
)

is p. As argued there are only p number of non-
zero coefficients ca,b, i.e., there are only p non-vanishing rows in D	c, but since
	d(0), 	d(1), . . . , 	d(p−1) are generated from the spectrum of π(kp, 0) (k ∈ Zp), by
Eq. (3.1) if we index its rows by Zp × Zp, then two rows will be identical if they are
in the same coset of K0 in Zp2 × Zp2 .

Consequently for D	c
( 	d(0), 	d(1), . . . , 	d(p−1)

)

to have rank p, non-zero coeffi-
cients in the expansion equation (3.3) must also be evenly distributed in cosets
of K0, i.e., for each a ∈ Zp there is also precisely one non-zero entry in each
set {ca,0, ca,1, . . . , ca,p−1} and their moduli are same. This implies again for each
t ∈ {1, 2, . . . , p − 1} we have

0 = 〈π(tp, 0)	c, 	c〉,

i.e., P	c ⊥ π(K̃0). ��
Lemma 3.3 Let p be a prime number and S ⊂ Zp2 × Zp2 an order p2 subset that
contains the identity element. If S has discrete Gabor spectrum 	c, and P	c ⊥ π(�K ),

then S = K .
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Proof Let us first show that for each k in the index set {0, 1, . . . , p − 1,∞}, there is
at least one Qk such (K , Qk) is a tiling pair in K⊥

k and

Qk ⊆ supp(P	c). (3.4)

Suppose not, then there must be a coset qk + K of K in K⊥
k such that

P	c ⊥ π(qk + K ), (3.5)

for otherwise if no such coset exists, then each coset intersect supp(P	c) non-trivially,
and we may simply pick a member from each intersection to form Qk .

It then follows from Eq. (3.5) that

π∗(qk)	c ∈ ker
(

G∗
K (	c)) ,

which means that (K , 	c) is not full rank, and contradicts the assumption that P	c ⊥
π(�K ) (which by Eq. (2.7) implies that GK (	c) is orthogonal).

Now for each k in the index set {0, 1, . . . , p − 1,∞}, pick one Qk that satisfies
Eq. (3.4), and let Q be union of all such Qk, then Q is a tiling complement of K in
Zp2 × Zp2 . By Lemma 2.8 we shall have

�̂Q ⊆ Z(FS).

Set

ak = |S ∩ K̃k |, b j,k = |S ∩ H̃ j,k |,

and

a = a0 + a1 + · · · + ap−1 + a∞, bk =
∑

j∈Zp

b j,k,

with Lemma 3.1 we then have

1 + a + bk = p(1 + ak + b j,k),

holds for all j ∈ Zp and all k from the index set {0, 1, . . . , p − 1,∞}. Fix k and sum
up over j we get

p(1 + a + bk) = p2 + p2ak + pbk,

i.e.,

1 + a = p(1 + ak).
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Sum up over k we obtain

p + 1 + (p + 1)a = p(p + 1) + pa,

i.e.,

a = p2 − 1,

which shows |K ∩ S| = p2 = |S|, and thus S = K . ��
It is possible for supp(P	c) to be not solely contained in a Lagrangian, e.g., if n = 4

and 	c = (1, 1, 0, 0), then Z(P	c) = �K ∪ H̃(1,0) ∪ H̃(1,∞).

4 Main results

Theorem 4.1 Let p be a prime number and S ⊂ Zp2 ×Zp2 a subset of order p
2, then

S has a discrete Gabor spectrum if and only if it is a discrete Gabor tile.

Proof Without loss of generality we may assume that S contains the identity element.
The if part is already elaborated in [50, Theorem 2] but for completeness we will

still include a proof (it is a simpler and clearer proof nevertheless) here. There are two
cases:

If S is a Lagrangian, then by Lemma 2.9, it is possible to take a 	c ∈ C
n such that

G(S, 	c) forms a basis of C
n . Consider its frame operator

A = GS(	c)G∗
S(	c) = nPS P	c.

It follows from Corollary 2.1 that PS is the orthogonal projection onto the span of
π(S), thus A commutes with every element in π(S), consequently we get

GS(A
− 1

2 	c) = A− 1
2GS(	c),

where it is easy to verify that the right-hand side is unitary (this is actually the uni-

tary component in the polar decomposition of GS(	c)). Therefore G(S, A− 1
2 	c) is an

orthonormal basis of C
n .

Alternatively if S is the tiling complement of a Lagrangian, then suppose H �Zn ×
Zn is a Lagrangian that S complements. Let 	c be a vector as in Lemma 2.7, then P	c is in
the span of π(H) = π(�H) ∪ {π(0, 0)}, which by Eq. (2.1) is disjoint from π(�S),

and further implies P	c ⊥ π(�S). Therefore by Eq. (2.7) this means that G(S, 	c) is an
orthonormal basis of C

n .

The only if part: Suppose that G(S, 	c) is an orthonormal basis for C
n, but S com-

plements no cyclic Lagrangians. For each cyclic Lagrangian Hj,k, by Lemma 2.4

there are only four possibilities for Z(FS) ∩ Ĥ j,k : it is either empty, or equals �Ĥ j,k

or equals ̂̃Hj,k, or equals
̂K̃k . But since S complements no cyclic Lagrangians, by
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Lemma 2.6 the case of Z(FS) ∩ Ĥ j,k = �Ĥ j,k shall be ruled out. By Lemma 2.8 this
further implies that at least one of H̃i, j and K̃k is included in Z(P	c). In particular, if

K̃k ∩ supp(P	c) �= ∅,

then we must have

H̃k ⊆ Z(P	c), (4.1)

otherwise if on the contrary there is some H̃ j,k that is not completely included in
Z(P	c), then

�Ĥ j,k ⊆ Z(FS),

by Lemma 2.8, which means S complements Hj,k by Lemma 2.6 and thus contradicts
the assumption that S complements no cyclic Lagrangians.

Now there are three cases:
Case 1: �K ⊆ Z(P	c). By Lemma 3.3 this means S = K .

Case 2: �K ⊆ supp(P	c). By Lemma 2.8 this means �K ⊆ Z(FS), which by
Lemma 2.6 further implies that S is a tiling complement of K .

Case 3: The set {K̃0, . . . , K̃ p−1, K̃∞} can be partitioned into two proper and non-
empty subsets X ,Y , so that X ⊆ Z(P	c) and Y ⊆ supp(P	c). By Lemma 3.2 and
Eq. (4.1) this would imply that P	c ⊥ π(K̃k) for each k in the index set {0, 1, . . . , p −
1,∞}, i.e., Y = ∅, which is a contradiction.

Thus in summary, if S is not a tiling complement of any cyclic Lagrangians, then
either S = K or it is a tiling complements of K . This completes the proof. ��

Several colleagues have brought to the author the question that in Theorem 4.1
whether it is possible to replace the condition of S being a discrete Gabor tile to S
being merely a tile of order n (i.e., as defined in Definition 1.2), as for prime n clearly
these two notions coincide.

The question is twofold: for a composite number n, is a tile of order n necessarily a
subgroup or complements a subgroup? If not, and if S is an order n tile that is neither
a subgroup nor the tiling complement of some group, then is it still possible to have
some window vector 	c so that G(S, 	c) is an orthonormal basis?

In general a tile need not be, or complement, or contain, or be contained in a
subgroup. There are extensive researches classifying these cases, see e.g., Tijdeman
properties [46] (see also [28]), periodicity and quasi-periodicity [3, 15, 39, 40] etc.,
or the book [42] for details. At the moment the author is unfortunately not even able
to determine any of these two questions.
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