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Abstract
Pseudo-differential operators, viewed as superpositions of time-frequency shifts, are
natural models for communication channels. Channel identification is thus to find
a proper input signal that induces an injective map on certain spaces of pseudo-
differential operators. It is known that this is possible for channels with finite energy
and spreading support area less than 1 (resp. 1/2) if the location and shape of the
support area is known (resp. unknown) and the identifier depends on the spreading
support.Wewill construct a universal input signal, which is independent of the spread-
ing support, that identifies all such spaces of channels. The novelty of this result lies
in the universality of this identifier.

Keywords Pseudo-differential operators · Channel identification · Time-frequency
analysis · Gabor analysis

Mathematics Subject Classification 47G30 · 42B35 · 42C35

1 Introduction

A communication channel essentially acts on an input signal by time shifts (due to
distances) and frequency shifts (i.e., the Doppler effect due to motions), both super-
posed with proper weights (due to various factors) which are representable by some
function (or distribution) η. For this reason it is natural to model a communication
channel by a pseudo-differential operator Hη of the following form (See e.g., [1–4]):
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(Hη f )(x) =
∫∫

R2
η(t, v)(MvTt f )(x) dv dt, (1)

where Tt : f (x) �→ f (x − t) is the time shift (translation) operator and Mv : f (x) �→
e2π iv·x f (x) is the the frequency shift (modulation). See [5,6] for the derivation of this
particular form, and [7, Chapter 14.1], [8, Chapter 2.2] for other forms.

The weight η is called the spreading function (although it may also be a distribu-
tion) of the operator and its support is accordingly called the spreading support. The
domain of Hη and the scope of η considered in this article will be specified later. In
communication theory, if the spreading support is inside a rectangle of unit area, then
the channel is called underspread, otherwise it is called overspread. Here, as is also the
case in some literature (e.g., [9] etc.), we borrow these concepts, but define them a bit
differently: we say a channel (or its spreading support) is overspread if the spreading
support is compact Jordan measurable with area larger than 1; and similarly we say it
is underspread if the spreading support is compact Jordan measurable with area less
than 1.

Let U ⊂ R
2 be a compact Jordan measurable set. Through (1) each member in

L2(U ) models a communication channel whose spreading support is inside U with
finite energy. For a fixed input signal g, we define a linear map �g to be

�g : η �→ Hηg.

If�g is bounded from L2(U ) to L2(R), thenwe call it the identificationmap, call g the
identifier, and call �gη the response. If �g is injective on L2(U ), then we say L2(U )

(as well as the space of pseudo-differential operators or communication channels with
L2(U ) spreading functions) is identifiable.

In the late 1950s, Kailath [10] proclaimed that a collection of unknown communi-
cation channels having common maximum delay a and common maximum Doppler
shift b would be identifiable by a single input signal if and only if ab ≤ 1, i.e., if and
only if the spreading function η is supported in a rectangle of area at most 1. It was
later shown (see [5]) that a channel has to be underspread (in our tweaked definition)
to be identifiable, and explicit reconstruction methods were given (see [9]), see also
[11] for relevant work from an alternative perspective, and [12] for blind identification
(meaning the support of η is unknown).

Our main result is the construction of a universal identifier that identifies all such
underspread channels:

Theorem 1 There exists a tempered distribution g, such that for any compact Jordan
measurable set U ⊂ R

2 with area less than

(i) 1 if the location of U is known, or
(ii) 1/2 if the location of U is unknown,

�g is bounded and injective from L2(U ) to L2(R).

The universality means that the single identifier g works for all identifiable spaces,
while in [9,12] one has to design a rectification scheme as well as an identifier based
on the shape of U .
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Using advanced time-frequency tools, we also give in the appendix a conciser
exposition of the reconstruction method used in [9].

2 Preliminaries

To understand our construction, it is necessary to be familiar with existing techniques
for identifying underspread channels. Unfortunately this is heavy in notation and
intensive in computation, which is an obstacle for this topic to be accessible to peo-
ple outside the community. In this section we only introduce prerequisite concepts,
relevant details are in the appendix part.

Let A(R) be the space of functions that are Fourier transforms of L1(R) functions,
and A′(R) be the space of distributions that are Fourier transforms of L∞(R) functions.
These are Banach spaces with norms [13]

‖ f̂ ‖A(R) = ‖ f ‖L1(R); ‖ f̂ ‖A′(R) = ‖ f ‖L∞(R).

Letψ0 ∈ C∞(R) be compactly supported in [−ε0−1/2, ε0+1/2] for some small
fixed ε0 with

ψ0(x) :
{

= 1 x ∈ (− 1
2 + ε0,

1
2 − ε0

)
,

∈ [0, 1] x ∈ [− 1
2 − ε0, − 1

2 + ε0
] ∪ [ 1

2 − ε0,
1
2 + ε0

]
,

in such a way that its shifts form a BUPU (bounded uniform partition of unity):

∑
k∈Z

Tkψ0 ≡ 1.

Wiener-Amalgam spaces capture functions or distribution with different local and
global topological properties, they are defined as

W A,�p (R) = { f : ‖ f ‖W A,�p (R) = ‖{‖Tkψ0 · f ‖A(R)}k∈Z‖�p < ∞},

and

W A′,�q (R) = {g : ‖ f ‖W A′,�q (R)
= ‖{‖Tkψ0 · g‖A′(R)}k∈Z‖�q < ∞}.

Obviously these norms depend on the choice of the window ψ0, but different choices
ofψ0 induce equivalent norms [13], therefore corresponding underlying spaces do not
change. Of special interests to us are W A,�1(R) and W A′,�∞

(R), which respectively
coincides with the Feichtinger algebra and its dual with equivalent norms (see [14,15]
and [16, Theorem 3.2.6]). This equivalence is a direct consequence of [17, Theorem
4.1.2] and [18], alternatively see [19,20] and references there for more details and
history over this equivalence. There is also the continuous embedding (S denotes the
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Schwartz class and S′ denotes tempered distributions):

S(R)
dense⊂ W A,�1(R)

dense⊂ L2(R) ⊂ W A′,�∞
(R) ⊂ S′(R). (2)

The Fourier transform F , and time-frequency shifts Tt , Mv are automorphisms on each
of them [21]. Such a setting provides uswith away toworkwith norms instead of semi-
norms. See [22–26] for more information on the Feichtinger algebra and the Banach
Gelfand triple W A,�1(R) ⊂ L2(R) ⊂ W A′,�∞

(R), and see [27] for motivations. See
also [28] and [29, Prop 2.4] for their connections to modulation spaces.

Denote δt as the Dirac measure at t . For r > 0 and n ∈ N, we use the following two
notations to denote an unweighted Dirac comb (also called delta train, spiked train,
impulse train or Shah distribution in different literature) and a periodically weighted
Dirac comb respectively:

gr =
∑
j∈Z

δ jr , g�c =
∑
j∈Z

n−1∑
k=0

ckδ nj+k√
n

.

where �c = (c0, c1, . . . , cn−1) ∈ C
n , i.e., deltas in g�c are supported on 1√

n
Z with

corresponding weights being elements in �c periodized, thus
√
n is a period of g�c.

One should also notice that such a periodically weighted Dirac comb is just linear
combinations of several (shifted) unweighted Dirac combs.

It is easy to see (by definition of Wiener-Amalgam norms) that they are both in
W A′,�∞

(R) (thus they are also tempered distributions) with

‖gr‖W A′,�∞ (R)
≤ 3max

(
1

r
, 1

)
, ‖g�c‖W A′,�∞ (R)

≤ 3‖�c‖�1 . (3)

With tools from Gabor analysis, one can decompose a communication channel into
small sub-channels supported in rectangular boxes on the time-frequency plane. This
can also be arranged for finite dimensional vector spaces, see e.g., [30–32] for the
history and development of concepts introduced below.

On Cn , define the discrete translation T and discrete modulation M to be

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1

1
. . .

. . .
. . .

. . .
. . .

1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, M =

⎛
⎜⎜⎜⎜⎜⎝

1
ω

. . .

ωn−2

ωn−1

⎞
⎟⎟⎟⎟⎟⎠

,

where ω = e
2π i
n is a primitive n-th root of unity. We are overloading the same notation

for their continuous counterparts, but depending on whether they are applied to a
function or a vector, the meaning should be clear.
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Discrete shifts and discrete modulations commute up to a phase factor (just like
their continuous counterparts) with MT = ωT M and {ω, M, T } together under usual
multiplication generates a representation of the finite Heisenberg group (see e.g, [33]).

A discrete Gabor system on C
n takes the form {M jT k �c}( j,k)∈
 , where �c ∈ C

n is
the window vector, and 
 ⊆ Zn ×Zn is the support of this system. It is called a Gabor
matrix and denoted as G
(�c) if it is written into the matrix form with M jT k �c being
column vectors, the ordering of columns will be specified at the place where it makes
a difference.

Discrete Gabor systems possess many nice properties, what we need in this article
is that the set

{�c ∈ C
n : {M jT k �c}( j,k)∈Zn×Znhas full spark},

is open dense in Cn [34,35]. Here having full spark means any n distinct vectors from
{M jT k �c}( j,k)∈Zn×Zn are linearly independent.

3 Main result

Lemma 1 Let n ∈ N and � ⊂ Zn × Zn, let E
(n)
� be the union of cells in the grid as

defined in (10) in the appendix, then there exists a dense subset Y ⊂ C
n such that if

�c ∈ Y , then �g�c is injective on L2(E (n)
� ) for all � with

(i) |�| ≤ n if the location of E (n)
� is known;

(ii) |�| ≤ � n
2 � if the location of E (n)

� is unknown.

Proof For a fixed known � ⊂ Zn × Zn with |�| ≤ n, define the set Y� to be

Y� = {�c ∈ C
n : �g�c is injective onL

2(E (n)
� )}.

By Proposition 1 in the appendix and the main result in [35], Y� is open dense in Cn .
Now since Zn × Zn is a finite set, there are finitely many � with |�| ≤ n, therefore
the intersection set

Y =
⋂

�⊂Zn×Zn|�|≤n

Y�,

is not only non-empty but also dense in C
n , and it is the desired set for (i).

Now if the location (the location also determines the shape) of E (n)
�1

, E (n)
�2

is unknown
and |�1|, |�2| ≤ �n/2� (�1,�2 need not be distinct), then |�1 ∪ �2| ≤ n, therefore
�g�c would be injective on L

2(E (n)
�1

∪E (n)
�2

) for any �c ∈ Y , whichmeans ifηi ∈ L2(E (n)
�i

)

for i = 1, 2 (i.e., η1 − η2 ∈ L2(E (n)
�1

∪ E (n)
�2

)), then

�g�cη1 �= �g�cη2,

and this establishes (ii). ��
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Theorem 1 There exists a tempered distribution g, such that for any compact Jordan
measurable set U ⊂ R

2 with area less than

(i) 1 if the location of U is known, or
(ii) 1/2 if the location of U is unknown,

�g is bounded and injective from L2(U ) to L2(R).

Proof It suffices to show (i), then (ii) follows using the same argument as in the proof
of Lemma 1. We will inductively construct the identifier first, and then show that it
has the desired property. The fundamental idea is to start with a primitive candidate,
then keep adding controlled perturbation to it when passing to the limit, so that on
each rectification the constructed identifier can always be viewed as the sum of a body
part (which is a usual identifier as in the appendix) and a tail part (which is a small
perturbation dominated by the body part).
Construction:

(1) First, let us set up the initial case. Take an identifier g�c(1) with �c(1) ∈ C
4 so that on

the grid E (4)
Z4×Z4

, g�c(1) identifies L2(E (4)
� ) as long as � ⊂ Z4 × Z4 with |�| = 4.

Such �c(1) exists by Lemma 1. Denote

σ
(1)
min = min

η∈L2(E (4)
� )\{0}

|�|=4

‖�g�c(1) η‖L2(R)

‖η‖
L2(E (4)

� )

, σ (1)
max = max

η∈L2(E (4)
� )\{0}

|�|=4

‖�g�c(1) η‖L2(R)

‖η‖
L2(E (4)

� )

,

Here min and max are indeed attainable, since by Proposition 1 (in the appendix)
they reduce to singular values of Gabor matrices G�(c̄(1)), and there are finitely
many such matrices as there are only finitely many such �. For convenience we
may also without loss of generality assume that ‖�c(1)‖�1 = 1, this can be done by
scaling �c(1).

(2) Next, suppose that we have already constructed the identifier g�c(k) with �c(k) ∈ C
4k

such that, if � ⊂ Z4k × Z4k with |�| = 4k , then g�c(k) identifies L2(E (4k)
� ), and

denote

σ
(k)
min = min

η∈L2(E (4k )
� )\{0}

|�|=4k

‖�g�c(k) η‖L2(R)

‖η‖
L2(E (4k )

� )

, σ (k)
max = max

η∈L2(E (4k )
� )\{0}

|�|=4k

‖�g�c(k) η‖L2(R)

‖η‖
L2(E (4k )

� )

.

(3) Now let us look at the k + 1 case, we embed �c(k) into C4k+1
by inserting three 0s

after each entry of �c(k), and denote the resulting vector as �d, i.e.,

�d =
(
�c(k)
0 , 0, 0, 0, �c(k)

1 , 0, 0, 0, . . . , �c(k)
4k−1

, 0, 0, 0
)

.

Let rk = √
4k = 2k , and set

ak+1 = 1√
rk

min

(
1√
rk

,
1

3
σ

(k)
min,

1

32
σ

(k−1)
min , . . . ,

1

3k
σ

(1)
min

)
, (4)
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Fig. 1 Each g�c(k+1) is a
perturbation of its predecessor

x

(k)

d(k+1)

Fig. 2 Finer grid

1√
4n

1√
4n+1

with a1 set to 1. Consider an �1 ball of radius ak+1 around �d , we pick a vector
�c(k+1) from this ball so that if � ⊂ Z4k+1 × Z4k+1 with |�| = 4k+1, then g�c(k+1)

identifies L2(E (4k+1)
� ). Existence of such a vector is guaranteed by Lemma 1.

Denote

�d(k+1) = �c(k+1) − �d,

and set �d(1) = �c(1). Repeat the above procedure, and look at

g =
∞∑
k=1

g �d(k) . (5)

We claim that g is the universal identifier (Fig. 1).

Verification:
Suppose U ⊂ R

2 is a compact underspread Jordan measurable set. The compactness
ensures that we can find an n large enough, such that there is an E (4n)


0
with |
0| = 4n

that coversU . Moreover, by simply splitting each cell in E (4n)

 into four equal smaller

cells, we get a new covering on the finer grid E (4n+1)
Z4n+1×Z4n+1

. As shown below (Fig. 2):

Inductively carry out this splitting procedure, and denote the covering in theZ4n+ j ×
Z4n+ j ( j ≥ 0) grid as E (4n+ j )


 j
. It is easy to see that they all satisfy the condition
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|
 j | = 4n+ j and correspond to the same set of area 1 and each induces a square Gabor
matrix of size 4(n+ j) × 4(n+ j), thus by the construction of g in (5) we get that

∞∑
k=1

‖ �d(k)‖�1 ≤
∞∑
k=1

ak ≤
∞∑
k=1

1

rk−1
=

∞∑
k=1

1

2k−1 = 2,

hence we apply (3) to get

‖g‖W A′,�∞ (R)
=

∥∥∥∥∥
∞∑
k=1

g �d(k)

∥∥∥∥∥
W A′,�∞ (R)

≤
∞∑
k=1

‖g �d(k)‖W A′,�∞ (R)
≤ 3

∞∑
k=1

‖ �d(k)‖�1 ≤ 6,

which shows g ∈ W A′,�∞
(R), and is also a tempered distribution by (2).

Now on L2(E (4n)

0

), we shall view g as a body part which identifies the space plus
a tail part which is a controlled perturbation that does not sabotage the identification:

g = g �d(1) + g �d(2) + · · · + g �d(n)︸ ︷︷ ︸
body

+ g �d(n+1) + g �d(n+2) + · · ·︸ ︷︷ ︸
tail

= g�c(n) + g �d(n+1) + g �d(n+2) + . . .︸ ︷︷ ︸
perturbation

,

the body part (by the definition of �d(k)) adds up to g�c(n) , which by our construction

identifies L2(E (4n)

0

) with lower bound σ
(n)
min and upper bound σ

(n)
max, while for each

g �d(n+ j) ( j ≥ 1) in the tail, recall that by (4) we have

‖ �d(n+ j)‖�1 ≤ an+ j ≤ 1

3k
√
rn+ j

σ
(n)
min.

The Gabor matrix G
k (d̄
(n+ j)) is a square matrix and has 4n+ j columns, each column

has same �1 norm as d̄(n+ j). Consequently we obtain

‖G
 j (d̄
(n+ j))‖ ≤

√
4n+ j‖d̄(n+ j)‖�1 ≤ rn+ j an+ j ≤

√
rn+ j

3 j
σ

(n)
min.

By Proposition 1 (in the appendix), we can conclude that if η ∈ L2(U ) ⊆
L2(E (4n+ j )


 j
), then

‖�g �d(n+ j) η‖L2(R) ≤ 1

3 j
σ

(n)
min‖η‖L2(U ).
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Therefore the tail part is dominated by σ
(n)
min:

∥∥∥∥∥∥
∞∑
j=1

�g �d(n+ j) η

∥∥∥∥∥∥
L2(R)

≤
∞∑
j=1

‖�g �d(n+ j) η‖L2(R) ≤
∞∑
j=1

1

3 j
σ

(n)
min‖η‖L2(U )

= 1

2
σ

(n)
min‖η‖L2(U ).

Consequently we get

‖�gη‖L2(R) =
∥∥∥∥∥∥

⎛
⎝�g�c(n)

+
∞∑
j=1

�g �d(n+ j)

⎞
⎠ η

∥∥∥∥∥∥
L2(R)

≥ ‖�g�c(n)
η‖L2(R)

−
∥∥∥∥∥∥

∞∑
j=1

�g �d(n+ j) η

∥∥∥∥∥∥
L2(R)

≥ 1

2
σ

(n)
min‖η‖L2(U ),

and

‖�gη‖L2(R) ≤ ‖�g�c(n)
η‖L2(R) +

∥∥∥∥∥∥
∞∑
j=1

�g �d(n+ j) η

∥∥∥∥∥∥
L2(R)

≤
(

σ (n)
max + 1

2
σ

(n)
min

)
‖η‖L2 ,

which shows �g is upper and lower bounded on L2(U ), and g is thus the universal
identifier since U is arbitrary. ��

Appendix: Rectification and discretization

This part contain exposition material of the method used in [9] to discretize the
identification map on irregular compact underspread Jordan measurable sets. The
decomposition formula in Proposition 1 below is only vaguely implied there but not
explicitly stated. We adopted a different approach which uses the adjoint relation
between the identification map and the short time Fourier transform, as a result, the
derivation here should be simpler and clearer.

The Zak transform Zr of a function f ∈ L2(R) is defined as

(Zr f )(x, w) =
∑
k∈Z

f (x + kr)e−2π ikr ·w, (6)

where the right hand side is defined a.e. and r > 0 is a parameter.
The short time Fourier transform (STFT) Vφ with respect to a window φ onRn can

be written in several ways:

(Vφ f )(t, v) = 〈 f , MvTtφ〉 = e−2π i t ·v
∫
R

f (x + t)φ(x)e−2π i x ·v dx . (7)
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The integral form is well defined for f , φ being L2(R) functions, while the bracket
form can be applied to any dual pairing.

Comparing the definition in (6) and (7), one can see that gr links STFT to Zak
transforms (see also [6, Section 3.3]):

Vgr f = e−2π i t ·vZr f .

Moreover, for nice functions such as Schwartz class funcitons f , g, η, we have

∫∫∫
R3

η(t, v) f (x)(MvTt gr )(x) dx dv dt

=
∫∫∫

R3
η(t, v)(MvTt gr )(x) f (x) dv dt dx,

which can be further written as

〈η, Vg f 〉 = 〈�gη, f 〉, (8)

under proper dual pairing. In particular [6, Theorem 4.1] (which is based on kernel
theorems in [7, Chapter 14.4] and [36, Lemma 4.1]) shows that (8) holds for g ∈
W A′,�∞

(R), f ∈ W A,�1(R) and η ∈ L2(U ) where U ⊂ R
2 is compact. See also

[11,37].
Now for η ∈ L2(U ), we can define �g�c to be the element in L2(R) that satisfies

(8), then by the density in (2) we get that

〈�g�cη, f 〉 = 〈η, Vg�c f 〉, (9)

holds for any f ∈ L2(R) and η ∈ L2(U ) with U ⊂ R
2 compact.

The original case that Kailath considered becomes somewhat trivial under this
perspective. Indeed, if the spreading function is supported in a rectangle with width r
and height 1/r , then (9) already shows �√

rgr is unitary from L2(Ur ) to L2(R), since
its adjoint, V√

rgr restricted to Ur , is essentially the corresponding Zak transform,
which is unitary onto such a rectangle.

Hence we now consider a bit more complicated case where the channel is still
underspread but the spreading support can not be included in a rectangle of area 1.
Let U be a compact underspread Jordan measurable set, we include it in a

√
n × √

n
square where n ∈ N is large enough, and view the time-frequency plane as a torus with
this

√
n × √

n square being its fundamental domain. Under this setting without loss
of generality we may assume that U is in the first sector of the time-frequency plane
and take the square to be [0,√n] × [0,√n]. The discretization procedure, proposed
in [9] and presented with a different and simpler proof here, consists of three steps:
rectification, vectorization and assembling the matrix.

Rectification:
We split the this square into a grid consists of cells with size 1/

√
n × 1/

√
n, so that

the grid has n × n cells in total. We index each cell by a member in the additive group
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(0, 0) (1, 0)

(0, 1) (1, 1)

1/
√

n

√
n

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

η|
E

(n)
(0,0)

η|
E

(n)
(0,1)

η|
E

(n)
(1,0)

η|
E

(n)
(1,1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

SΓη

Fig. 3 Rectification and Vectorization

Zn ×Zn . The intersection cell of the j-th column from left to right and kth-row from
bottom to top will be indexed as E (n)

( j−1,k−1), the superscript (n) indicates grid and cell
sizes.

If � ⊆ Zn × Zn , we use the notation E (n)
� to denote the union of all cells indexed

by �, i.e.,
E (n)

� = {E (n)
( j,k) : ( j, k) ∈ � ⊆ Zn × Zn}. (10)

The full grid can thus be written as E (n)
Zn×Zn

. In particular, the area of E (n)
� is |�|/n.

We consider all cells that intersects U and set


 =
{
( j, k) : E (n)

( j,k)

⋂
U �= ∅

}
. (11)

Vectorization:
Given � ⊂ Zn × Zn , define the vectorization operator

S� : L2(E (n)
� ) → L2(E (n)

(0,0))
|�|,

so that if ( j, k) ∈ �, then the ( j, k)-th entry of S�η is η restricted to the cell E (n)
( j,k),

i.e.,

(S�η)( j,k)(t, v) = η|
E (n)

( j,k)
= η

(
t + j

r
, v + k

r

)
, (12)

where (t, v) ∈ E (n)
(0,0), and r = √

n. The action of S� is best described by the figure
below (Fig. 3):

Assembling the matrix:
Take �c ∈ C

n , for any η ∈ L2(U ), we instead view it as an element in L2(E (n)

 ), then

since

(V�gc f )(t, v) =
n−1∑
k=0

ck
〈
f , MvTt+ k

r
gr

〉
=

n−1∑
k=0

ck(Vgr f )

(
t + k

r
, v

)
,
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we obtain

(V�gc f )|E (n)
(0,0)

=
n−1∑
k=0

ckhk = 〈�h, c̄〉,

where c̄ denotes the complex conjugate of �c , and
�h = SZn×{0}Vgr f . (13)

Now if we move horizontally by one cell, with quasi-periodicity and r2 = n we get

(V�gc f )|E (n)
(1,0)

= (V�gc f )|E (n)
(0,0)

(
t + 1

r
, v

)
=

n−1∑
k=0

ck(Vgr f )|E (n)
(0,0)

(
t + k

r
+ 1

r
, v

)

= 〈�h, T c̄〉, (14)

alternatively if we move vertically by one cell, then with similar reasoning we obtain

(V�gc f )|E (n)
(0,1)

=
n−1∑
k=0

ck(Vgr f )|E (n)
(0,0)

(
t + k

r
, v + 1

r

)
= e−2π i tr 〈�h, Mc̄〉, (15)

combing the above altogether we get the following conclusion:

Proposition 1 Let �c ∈ C
n, denote its complex conjugate as c̄. Let U be a compact

Jordan measurable set, let r = √
n, and 
 be as defined in (11), then for any η ∈

L2(U ), we have

�g�cη = �gr S
−1
Zn×{0}G
(c̄)DS
η,

where D is a unitary diagonal scaling, and the ordering of columns in G
(c̄) is the
same as the ordering of entries in S
 . Moreover, we also have

1
4
√
n
σmin (G
(c̄)) ‖η‖L2(U ) ≤ ‖�g�cη‖L2(R) ≤ 1

4
√
n
σmax (G
(c̄)) ‖η‖L2(U ),

where σmax (G
(c̄)) and σmin (G
(c̄)) are respectively the largest and the smallest
singular values of of the Gabor matrix G
(c̄).

Proof With above derivations (14) and (15) we may decompose and vectorize Vg�c f

on E (n)

 into

S
Vg�c f = D∗G∗

(c̄)SZn×{0}Vgr f ,

where ∗ denotes the adjoint, and D∗ is the unitary diagonal scaling that collects the
exponential factor e−2π i tr emerged in (15). The adjoint relation in (9) then gives the



A universal identifier for communication channels Page 13 of 14     4 

decomposition formula (It is easy to see that S
 and SZ×{0} are unitary, thus their
adjoints and their inverses coincide).

The norm estimate follows by noticing that S−1
Zn×{0}, D, S
 are unitary, while the

range of S−1
Zn×{0} is L2([0, r ] × [0, 1/r ]), on which �gr (r = √

n) is, up to a scaling

factor
√
r , also unitary. ��

Consequently, injectivity of �g�c , and in particular the upper and lower bound of
�g�c depends solely on the Gabor matrix G
(c̄). Notice that it requires |
| = n for

G
(c̄) to be a square matrix, which means E (n)

 has area 1. On the other hand, for any

compact underspread Jordan measurable set U we can always choose n large enough
to cover it by such a set E (n)


 .
This decomposition also complies with the definition of discretized channels in

application. A discrete channel on Cn×n is a weighted superposition of discrete trans-
lations and modulations, it takes the form of a linear combination

∑
( j,k)∈
 a jkM j T k

with
 ⊂ Zn×Zn . Therefore its response on an input �c is simply
∑

( j,k)∈
 a jkM j T k �c,
which can be viewed as the Gabor matrix [M jT k �c]( j,k)∈
 multiplying the vector
�a = (a jk)

T
( j,k)∈
 .
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