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Abstract
Let G be an additive and finite Abelian group, and p a prime number that does not
divide the order of G. We show that if G has the universal spectrum property, then so
does G × Zp. This is similar to and extends a previous result for cyclic groups using
the same dilation trick but on non-cyclic groups as well. Inductively applying this
statement on the known list of permissible G one can replace p with any square-free
number that does not divide the order of G, and produce new tiling to spectral results
in finite Abelian groups generated by at most two elements.
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1 Introduction

Definition 1 A multiset is a collection of elements in which elements are allowed to
be repeated. A set in the usual sense is then a special case of multisets in which every
element has multiplicity 1.

In this article multisets will only be used after specifications. Let A, B be subsets of
an additive Abelian group G, we use A + B for the multiset formed by elements of
form a + b (computed within G) where a, b are enumerated from A, B respectively.
We write A ⊕ B if A + B is actually a set in the usual sense.

Definition 2 A subset A is said to be a tiling set in a finite additive Abelian group G,
if there is another subset B of G such that A ⊕ B = G (i.e., g ∈ G can be uniquely
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decomposed as g = a + b with a ∈ A and b ∈ B). B is then said to be a tiling
complement of A, and (A,̂S) is called a tiling pair in G.

Let

Zn = {0, 1, . . . , n − 1}, ̂Zn =
{

0,
1

n
, . . . ,

n − 1

n

}

,

respectively be the additive cyclic groupofn elements and its dual. Tobetter distinguish
forms of elements in different sets, wewill always use a hat symbol when talking about
subsets in ̂Zn , i.e., if S ⊆ Zn , then ̂S = {s/n : s ∈ S}. To use notations consistently
we agree that if G = Zn1 × · · · × Znk is an additive and finite Abelian group, then we
take ̂G = ̂Zn1 × · · · × ̂Znk .

If x, y ∈ R
d , then we denote x · y as the Euclidean inner product of x and y.

Definition 3 A subset A is said to be a spectral set in a finite additive Abelian group
G, if there is another subset ̂S of ̂G such that {e2π is·x }s∈̂S is an orthogonal basis on
L2(A) with respect to the counting measure.̂S is then said to be a spectrum of A, and
(A,̂S) is called a spectral pair in G.

Clearly (A,̂S) is a spectral pair if and only if (S, ̂A) is also a spectral pair.
A famous and central problem concerning spectral sets and tiling sets is the Fuglede

conjecture [6], which says that a set in R
d is a spectral set (in R

d ) if and only if it is a
tiling set (inR

d ). Originally Fuglede considered only open connected sets with certain
properties (Nykodym regions) and proved the statement for fundamental domains of
lattices, he also showed that disks and triangles are not spectral. The conjecture has
been disproved in both directions for d ≥ 3, see e.g. [5, 14, 15, 25, 33]. For lower
dimensions it remains open. Despite aforementioned negative results, there are still
positive results for domains that naturally appear in applications, see e.g., [23].

An effective strategy for attacking this problem in R
d is to try to reduce it to

finite Abelian groups. Those counterexamples mentioned above in R
d for d ≥ 3 are

constructed via complex Hadamard matrices which arise from different tiling and
spectral sets in finite Abelian groups. Standard statements as in [25, Propositions 2.1
and 2.5] and [15, Theorems 4.1 and 4.2] indicate that positivity of the conjecture in
R
d always imply positivity of the conjecture in finite Abelian groups generated by

d elements. The other direction is only established partially, the case of d = 1 is
elaborated in [3, Theorems 1.3 and 3.2] using rationality and periodicity results in [9,
13, 20], while for d = 2 periodicity is only known to a limited extent, see [1, 7, 8, 11,
26].

The result with most generality so far for the tiling to spectral direction in finite
cyclic groups is to combine the Coven-Meyerowitz property [2] with associated Łaba
spectra [16], latest progress on positive results of the Fuglede conjecture in cyclic
groups are scattered in [12, 16, 18, 19, 21, 24, 28, 30]. Approaches for finite Abelian
groups generated by two elements have been mostly combinatorial, see [4, 10, 29, 35].

In this paper we consider the universal spectrum property proposed in [21]:

Definition 4 If A is a tiling set in a finite and additive Abelian group G, and there is
some ̂S ⊆ ̂G such that (B,̂S) is a spectral pair for any tiling complement B of A,
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then ̂S is called a universal spectrum for tiling complements of A. If every tiling set
in G has a universal spectrum for its tiling complements, then G is said to have the
universal spectrum property.

It is shown in [21] that the strong Tijdeman property implies the universal spectrum
property, and all cyclic “good” groups (a term used in the context of Hajós conjecture,
see reference therein or perhaps expositions in [32, Chap. 4.2]) have these two prop-
erties. Upon considering all n ∈ N, positivity of tiling to spectral is also equivalent to
existence of universal spectra, see [5, 21]. Counterexamples (i.e., tiling sets without
universal spectra) in Abelian groups generated by 3 or more elements can be found in
[5, 15]. If G is cyclic, then Łaba spectra as constructed in [16] are actually universal.

The purpose of this article is to show that if G is an additive and finite Abelian
group, and p is a prime number that does not divide the order of G, then the universal
spectrum property can pass on from G to G ×Zp. Inductively applying this statement
on the known list of permissible G one can replace p with any square-free number
that does not divide the order of G, and produces new tiling to spectral results in finite
Abelian groups generated by at most two elements.

2 Preliminaries

Let S be a subset of an additive Abelian group G, denote the difference set of S as

�S = {s − s′ : s, s′ ∈ S, s �= s′}.

If A, B are subsets of an additive Abelian group G, then clearly A + B = A ⊕ B if
and only if the map

(a, b) �→ a + b, a ∈ A, b ∈ B,

is injective. This map is not injective if and only if there exist distinct a, a′ ∈ A and
b, b′ ∈ B with a + b = a′ + b′, i.e., a − a′ = b′ − b, consequently we get

A + B = A ⊕ B ⇔ �A ∩ �B = ∅. (1)

Let A be a subset of an additive and finite Abelian group G, and s ∈ ̂G. Define

FA(s) =
∑

a∈A

e2π ia·s, s ∈ R
n .

Given a function f , denote

Z( f ) = {

t : f (e2π i t ) = 0
}

.

It is then easy to see that (A,̂S) is a spectral pair in G if and only if

�̂S ⊆ Z(FA), |A| = |̂S|, (2)
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and (A, B) is a tiling pair in G if and only if

�̂G ⊆ Z(FA · FB), |A| · |B| = |G|. (3)

A very special case of tiling pairs is when one component sits in a proper subgroup,
then it has to tile the proper subgroup first, and allows an inductive analysis in the
subsequent part (the lemma below is essentially [32, Lemma 2.4], with extra specifics
on sk):

Lemma 1 Let (A, B), (H , S) both be tiling pairs in an additive and finite Abelian
group G, where H is a proper subgroup of G with index d, and S = {s0, . . . , sd−1}
with s0 = 0. For each k ∈ Zd , denote

B(k) = B ∩ (sk + H), C (k) = B(k) − sk .

If A ⊆ H, then (A,C (k)) is a tiling pair in H for each k ∈ Zd .

Proof Each element in G can be written uniquely as h + s for some h ∈ H and s ∈ S.
Applying the projection h + s �→ s on the decomposition

G = A ⊕ B = A ⊕
(

B(0) ∪ · · · ∪ B(d−1)
)

,

we obtain

S|H | = {0}|A| ⊕
⎛

⎝

⋃

k∈Zd

{sk}|B(k)|
⎞

⎠ ,

where notations such as S|H | mean the multiset formed by repeating every element of
S precisely |H | times. Comparing both sides it is easy to see that we must have

|B(0)| = · · · = |B(d−1)| = |H |
|A| , A ⊕ B(k) = sk + H ,

which is the desired result. ��
A typical strategy to make use of Lemma 1 is the dilation result below, the cyclic

case is given in [34, Theorem 1] while the non-cyclic case is later proved in [27,
Proposition 3] (alternatively see [32, Theorem 3.17]).

Proposition 1 Let G be an additive and finite Abelian group, and (A, B) a tiling pair
in G. If m ∈ N is a number that is co-prime to |A|, then (mA, B) is still a tiling pair
in G.



Journal of Fourier Analysis and Applications            (2024) 30:17 Page 5 of 9    17 

3 Main Results

Theorem 1 Let G be an additive and finite Abelian group, and p a prime number that
does not divide |G|. If G has the universal spectrum property, then so does G × Zp.

Proof Let (A, B) be a non-trivial (i.e., both |A| and |B| are greater than 1) tiling pair in
G×Zp, since p does not divide |G|, one of |A|, |B|, say |A|without loss of generality,
is not divisible by p.

Let ψ be the projection from G × Zp to G × {0} with kernel H , i.e.,

ψ(g, j) = (g, 0).

Claim: (ψ(A), B) is still a tiling pair in G × Zp.
Indeed, since p � |A|, (pA, B) remains a tiling pair in G by Proposition 1. Let p−1

be the multiplicative inverse of p modulo |G|, p−1 exists and is also co-prime to |G|
since both p, p−1 can be viewed as elements in the multiplicative group modulo |G|,
consequently using Proposition 1 again we have (p−1 pA, B) is a tiling pair in G, the
claim thus follows since

ψ(A) = p−1(pA).

Now for each k ∈ Zp set

G(k) = G × {0} + (0, k), B(k) = B ∩ G(k), C (k) = B(k) − (0, k) = ψ(B(k)).

By Lemma 1, (ψ(A), B(0)) forms a tiling pair of G × {0}, which has the universal
spectrum property by assumption. Let ̂SA ⊂ ̂G × {0} be a universal spectrum for all
tiling complements of B(0) in G × {0}, and similarly let ̂SB ⊂ ̂G × {0} be a universal
spectrum for all tiling complements of ψ(A) in G × {0}.

As ̂SA ⊆ ̂G × {0}, it is easy to see that

FA(sa) = Fψ(A)(sa) = 0, (4)

holds for any sa ∈ �̂SA, which implies that (A, ̂SA) is a spectral pair in G × Zp, it is
universal since by construction ̂SA is independent of A.

By Lemma 1, for each k ∈ Zp, (ψ(A),C (k)) is a tiling pair of G × {0}, hence each
(C (k),̂SB) is a spectral pair by universality of ̂SB . Repeating the same argument as in
(4) we see that each (B(k),̂SB) is a spectral pair.

Let

H = {0} × Zp,

we shall verify that (B, ̂SB ⊕ ̂H) is also a spectral pair:
By (1) it is clear that ̂SB ⊕ ̂H is well defined, and thus

|B| = p|B(0)| = p|̂SB | = |̂SB ⊕ ̂H |.
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Take any pair of distinct elements b̂, b̂′ ∈ ̂B, if b̂, b̂′ ∈ ̂B(k) for some k ∈ Zp, then

b̂ − b̂′ ∈ �̂B(k) ⊆ Z(FSB ).

Alternatively if b̂ ∈ ̂B(k) and b̂′ ∈ ̂B(k′) for distinct k, k′ ∈ Zp, then by the definition
of H we have

FH (b̂ − b̂′) = FH

((

0,
k − k′

p

))

= �p(e
2π(k−k′)/p) = 0.

where �p(x) = ∑p−1
j=0 x

j is the p-the cyclotomic polynomial.
Therefore

�̂B ⊂ Z(FH · FSB ) = Z(FH⊕SB ),

which establishes spectrality by (2). The spectrum ̂SB ⊕ ̂H is universal since by
construction it is independent of B. ��

Remark:A similar statement is available for the subcase of cyclicG in [17, Theorem
6.1, Corollary 6.2], using the dilation result for cyclic groups [34, Theorem 1], and
the fact that Łaba spectra [16] of tiling sets with the Coven-Meyerowitz property [2]
are universal. These arguments there goes back to [2] and actually also [21, Sect. 5].
It is also worth mentioning that as conjectured in [17, Sect. 9], all known approaches
for classifying tiling pairs in cyclic G, including the Coven-Meyerowitz property (in
particular, see the remark right after [2, Lemma 2.1]), quasi-periodicity (see perhaps
expositions in [32, Chap. 5.2]), and Tijdeman properties (which has been disproved
by counterexamples in [22, 31]), lead to the same intermediate statement that one
component of a tiling pair shall be able to tile a smaller subset in G first.

Corollary 1 Let a, b, n ∈ N, and p, q, r distinct primes. If G is one of the following:

Zpaqb , Zp2q2r2 , Zp × Zpn , Zpq × Zpq ,

and n0 a square-free number that is co-prime to |G|, then any tiling set in G × Zn0 is
also spectral, and has a universal spectrum for its tiling complements.

Proof It suffices to establish that each G possess the universal spectrum property, the
rest then follows by successively applying Theorem 1 on each prime divisor of n0.

It is shown in [2] (for G = Zpnqm ) and [18, 19] (for G = Zp2q2r2 ) that all tiling
sets in G have Łaba spectra, which are universal.

Universalities in Zpq × Zpq can be inferred directly from the construction in [4].
We give an outline below:

Let B be a fixed tiling set in G = Zpq × Zpq , and consider an arbitrary tiling
complement A of it, there are four cases:

• If |B| = pq2, then |A| = p, according to [4, p. 13 Case 1], there is an order
p element û ∈ ̂G such that û /∈ Z(FB), and (A, 〈û〉) is a spectral pair in G for
any tiling complement A of B (here the notation 〈û〉 means the cyclic subgroup
generated by û), 〈û〉 is universal since it depends only on B.



Journal of Fourier Analysis and Applications            (2024) 30:17 Page 7 of 9    17 

• If |B| = q2, then |A| = p2, according to [4, p. 14 Case 2], ̂Zp × ̂Zp is a spectrum
of A, it is universal since in this case it is unique.

• If |B| = pq, then |A| = pq, according to [4, p. 14 Case 3], there exist û, v̂ ∈
̂G \ Z(FB) with order p, q respectively, and (A, 〈û, v̂〉) is a spectral pair in G
for any tiling complement A of B (here the notation 〈û, v̂〉 means the subgroup
generated by û and v̂), the spectrum is universal since it does not depend on A.

• If |B| = p, then |A| = pq2, according to [4, p. 13 Case 4], there is an order p
element û ∈ ̂G such that û /∈ Z(FB), and

(

A, (̂Zq × ̂Zq) ⊕ 〈û〉) is a spectral pair
in G for any tiling complement A of B, the spectrum is again universal since it is
independent of A.

Finally to see universalities in Zp × Zpn , let B be a fixed tiling set in Zp × Zpn ,
and consider an arbitrary tiling complement A of it. We shall produce a spectrum̂S of
A that is also independent of A, then it is universal. Following the steps in [35], there
are several cases:

• If |B| = pn , then |A| = p. By [35, Lemma 2.7, Theorem 4.1], there is some
ŝ ∈ ̂Zp × Ẑpn \ Z(FB), and

̂S = {kŝ : k ∈ Zp},

is a spectrum of A, clearly ̂S depends only on B.
• If |B| = pb < pn , then |A| = pa where a = n + 1 − b. We partition the set

̂X = {(0, 1), (0, p−1), . . . , (0, p−(n−1))} ⊂ ̂Zp × Ẑpn into two parts:

̂J = Z(FB) ∩ ̂X , ̂I = ̂X \ ̂J .

Notice that by (3) this implies ̂I ⊂ Z(FA).
As pointed out by the first paragraph in the proof of [35, Theorem 4.2], it follows
from [35, Lemma 3.2] that |̂J | is either b or b − 1.

– If |̂J | = b − 1, then |̂I | = a. By the second paragraph in the proof of [35,
Theorem 4.2], the set

̂S =
⎧

⎨

⎩

∑

ŝ∈̂I

kŝ : k ∈ Zp

⎫

⎬

⎭

,

is a spectrum of A, and it is independent of A.
– If |̂J | = b, then |̂I | = a − 1. As indicated in the proof of [35, Theorem 4.2]
(from the third paragraph to the end of the proof), there are two further sub-
cases: there exists some d̂ ∈ ̂Zp × {0} and ĥ ∈ ̂J such that d̂ + ĥ /∈ Z(FB)

([35, p. 9 case 2], so that by (3) d̂ + ĥ ∈ Z(FA) has to hold) and no such d̂, ĥ
exist [35, p. 10 case 3], all other cases are ruled out by [35, p. 9 case 1]. In the
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first case

̂S =
⎧

⎨

⎩

j(d̂ + ĥ) +
∑

ŝ∈̂I

kŝ : j, k ∈ Zp

⎫

⎬

⎭

,

is a spectrum of A, while in the second case

̂S =
{

( j/p, 0) +
∑

ŝ∈̂I

kŝ : j, k ∈ Zp

}

,

is a spectrum of A. In both situations ̂S is universal since it does not depend
on A.

��
To the author’s knowledge, concerning tiling to spectral in finite Abelian groups

generated by at most two elements, this list of G produces the result with the most
generality so far, in the sense that all known cases are covered in it and new cases are
also discovered here using this list.

Funding Funded by the Jiangsu Education Department, General Program for Natural Science Research in
Jiangsu Higher Institutions, with Grant No. 21KJD110001.
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