
Journal of Functional Analysis 286 (2024) 110402
Contents lists available at ScienceDirect

Journal of Functional Analysis

journal homepage: www.elsevier.com/locate/jfa

Regular Article

On rationality of spectrums for spectral sets in R

Weiqi Zhou 1

School of Mathematics and Statistics, Xuzhou University of Technology, Lishui 
Road 2, Yunlong District, Xuzhou, Jiangsu Province, 221111, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 22 October 2022
Accepted 23 February 2024
Available online 13 March 2024
Communicated by Stefanie 
Petermichl

MSC:
42A99

Keywords:
Fuglede conjecture
Spectral sets
Exponential basis
Orthonormal basis

Let Ω ⊂ R be a compact measurable set of measure 1 and 
with null boundary measure. We show that if Ω is a spectral 
set, then it admits a rational spectrum. The proof relies on 
the periodicity of spectrums shown in [16], and adopts the 
technique in [28] for analyzing zeros of exponential sums as 
well as the technique in [16] that relates the spectrum to the 
tiling of |1̂Ω|2. The key technical ingredient we contribute 
that eventually leads to the result is the periodicity of values 
from an exponential sum on a certain subgroup of Z, which 
characterizes the torsion part of the spectrum. An immediate 
consequence of this result, together with periodicity and 
rationality results in [16,28], is the equivalence between the 
Fuglede conjecture in R and in Zn.

© 2024 Elsevier Inc. All rights reserved.

1. Introduction

Definition 1. We shall call Ω ⊂ R a region, if it is compact, measurable, with zero 
boundary measure and positive interior measure.
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Definition 2. Let Ω ⊂ R be a region, it is said to be spectral if there is a countable set 
Λ ⊂ R such that the exponential system {e2πiλx}λ∈Λ is an orthogonal basis of L2(Ω), 
Λ is then called the spectrum of Ω.

Definition 3. Let Ω ⊂ R be a region, it is said to be tiling if there is a countable set 
Γ ⊂ R such that

⋃
γ∈Γ

γ + Ω = R,

holds up to the difference of a null set and the union is disjoint. Γ is then called the 
tiling complement of Ω. We may also say that Ω tiles R by Γ.

A famous problem concerning spectral sets and tiling sets is the Fuglede conjecture 
[10], which says that a set in Rd is spectral (in Rd) if and only if it is tiling (in Rd). Orig-
inally Fuglede considered only open connected sets with certain properties (Nykodym 
regions) and proved the statement for fundamental domains of lattices, he also showed 
that disks and triangles are not spectral. The conjecture has been disproved in both 
directions for d ≥ 3, see e.g. [9,21,22,36,44]. For lower dimensions it remains open.

With many nice properties, exponential orthogonal bases are not only core objects 
in Fourier analysis but also important tools in application areas such as samplings and 
(in general) signal processing. The search for exponential orthogonal bases on different 
domains has been a central and intriguing topic. Despite aforementioned negative results, 
there are still positive results for domains that naturally appear in applications, see e.g., 
[17,23,33].

Let Zn = {0, 1, . . . , n −1} be the additive cyclic group of n elements, an effective strat-
egy for this problem is to try to reduce it to finite Abelian groups. For example, those 
counterexamples mentioned above for d ≥ 3 are constructed via complex Hadamard 
matrices which arise from different tiling and spectral sets in Zd

n. Standard arguments 
as in [36, Proposition 2.1, Proposition 2.5] and [22, Theorem 4.1, Theorem 4.2] indicate 
that positivity of the conjecture in Rd always imply positivity of the conjecture in finite 
Abelian groups generated by d elements. The opposite direction is only established par-
tially for d = 1 in [8, Theorem 1.3, Theorem 3.2] using rationality and periodicity results 
in [16,20,28].

To be more precise, for d = 1, it was shown in [20,28] that normalized (i.e., containing 
0) tiling complements of unit measure regions are periodic and rational, which builds 
the equivalence of the tiling to spectral direction between R and Zn [8, Theorem 1.3, 
Theorem 3.2]. On the other hand, [16] showed that spectrums for bounded measurable 
sets with measure 1 must be periodic, but rationality of these spectrums is still missing 
(several partial results are available in e.g., [4,8,23,24]). Thus spectral to tiling in R
implies spectral to tiling in Zn but the converse statement is still to be established.

For cyclic groups, Hajós and Sands classified all “good” groups among Zn in which 
all decompositions are periodic, and further conjectured that all decomposition of finite 
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cyclic groups are quasi-periodic, see [5,15,37,38] or expository parts in e.g., [41,42]. Using 
Tijdeman properties ([45]) and the concept of universal spectrums (see also [9]), it was 
further shown in [29] that tiling to spectral holds for all cyclic “good” groups. Another 
effective approach is to use the Coven-Meyerowitz property ([6]) combined with associ-
ated Łaba spectrums ([24]), a list of latest results using this method can be found in 
[24–27]. For “good” cyclic groups, spectral to tiling also holds, see [19,34,35,39,40] and 
references therein, techniques classifying vanishing sums of roots of unity in [30] are also 
used there.

The purpose of this article is to show that if Ω is a spectral region of measure 1, then 
it has a rational spectrum. As a result, the Fuglede conjecture for regions in R is now 
equivalent to the Fuglede conjecture in Zn (for all n ∈ N).

The next section collects necessary facts and tools from the literature, then follows 
the section that further develops relevant techniques, the main result is presented in the 
last section.

2. Preliminaries

2.1. Characterization of spectrums

Results from this subsection are repeated from [16], with some extra subsidiary re-
marks.

Denote 1Ω as the characteristic function on Ω, and f̂ as the Fourier transform of a 
function f . We adopt the following form of the Fourier transform on the Schwartz class:

f̂(ξ) =
∫
R

f(x)e−2πiξxdx,

and extend it to tempered distributions by duality.
Given a function f : R → C, we shall denote its zero set by Z(f), i.e.,

Z(f) = {x ∈ R : f(x) = 0}.

For a countable set Λ ⊂ R, we denote its difference set (or gap set) by

Λ − Λ = {λ− λ′ : λ �= λ′, λ, λ′ ∈ Λ}.

In the lemma below, (1) is well known, while (2) is taken from [16] (who further 
attributes it to [10]).

Lemma 1 ([16]). Given a region Ω ⊂ R with measure m, then Λ is a spectrum of Ω if 
and only if

Λ − Λ ⊆ Z(1̂Ω), (1)
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and
∑
λ∈Λ

|f̂(ξ − λ)|2 = m · ‖f‖L2(Ω), (2)

holds for all ξ ∈ R and f ∈ L2(Ω).

Proof. Straightforward computation shows that

〈e2πiλx, e2πiλ′x〉 = 〈1Ω, e
2πi(λ′−λ)x〉 = 1̂Ω(λ′ − λ),

thus orthogonality is equivalent to (1). Similarly we have

1
m

∑
λ∈Λ

|f̂(ξ − λ)|2 =
∑
λ∈Λ

|〈f, 1√
m
e2πi(ξ−λ)x〉|2,

hence both completeness and unity of the system m−1/2{e2πiλx}λ∈Λ are equivalent to 
(2). �
Definition 4. A countable set Λ ⊂ R is said to be periodic if there exists a positive 
number t (i.e., a period) such that

t + Λ = Λ,

it is said to be rational if actually Λ ⊆ Q, and uniformly discrete if there is some constant 
d > 0 such that

|λ− λ′| ≥ d,

holds for all distinct λ, λ′ ∈ Λ.

Clearly spectrums must be uniformly discrete, the simplest way to see it is by using 
(1): Since Ω is compact, the Paley-Wiener theorem shows that 1̂Ω is analytic, thus there 
are no accumulation points in its zero set. In sampling theory, various notions of densities 
(e.g., Beurling density [2], uniform density [7], see [1, Chapter 1] and [47] for details) are 
also used to characterize the asymptotic average number of points in Λ for exponential 
frames {e2πiλx}λ∈Λ. A famous result is by Landau [31] on the necessary lower density, 
where sufficient conditions are available in e.g., [7,18]. Density results for Z(1̂Ω) ∩Z for 
certain region Ω ⊂ R can be found in [28, Section 3], and a partial statement for regions 
in Rd is given in [29, Theorem 2.2]. The structure of spectrums is actually very rigid:

Lemma 2 ([16]). Suppose that Ω ⊂ R is a region of measure 1, if Ω is spectral with 
spectrum Λ, then Λ is uniformly discrete and periodic, moreover, any period of Λ must 
be an integer.
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Proof. Details from the original proof are too long to be fully reproduced here, see [16, 
Theorem 1]. �
2.2. Zeros of exponential sums

Results from this subsection are essentially repeated from the main content of [28, Sec-
tion 4], with some slight rephrasing to accommodate the purpose of this paper, because 
of this a proof following the same approach is also given.

For a finite set S ⊂ R, let us denote

FS(x) =
∑
s∈S

e2πisx.

Lemma 3. [28] Let S ⊂ R be a finite set, and set

r = |S|.

Let SQ denote the subset of rationals in S, and Sc
Q the subset of irrationals in S. Let

Z(FS) = X ∪ Y,

where X is the union of all periodic subsets of Z(FS) with rational periods, and Y is 
disjoint from X, then we have

(i)

X ⊆ Z(FSQ
) ∩ Z(FSc

Q
).

(ii) Y contains no arithmetic progressions that are of length longer than r−1 and with 
rational common differences.

Proof. We shall first construct the set X. Consider the equivalence relation

s ∼ s′ ⇔ s− s′ ∈ Q,

which creates a partition on S:

S = S0 ∪ S1 ∪ . . . ∪ Sn, (3)

where S0 ⊂ Q and S1, . . . , Sn are subsets of irrationals, each set is an equivalence class 
under this equivalence relation.

For each k ∈ {0, . . . , n}, let rk = |Sk|, then we can write each Sk as

Sk = sk +
{
pk,1

, . . . ,
pk,rk

}
,

qk,1 qk,rk
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where s0 ∈ Q, s1, . . . , sn are irrationals, and pk,1, . . . , pk,rk as well as qk,1, . . . , qk,rk are 
natural numbers. Set

Nk = lcm(qk,1, . . . , qk,rk),

where lcm is the notion for least common multipliers, then clearly Z(FSk
) is Nk periodic 

if it is not empty.
Now we claim that

X = Z(FS0) ∩ . . . ∩ Z(FSn
).

By this construction, X would be periodic with period

N = lcm(N0, N1, . . . , Nn),

as long as it is not empty. Therefore it suffices to establish (ii), i.e., to show that

Y = Z(FS) \X = Z(FS) \ (Z(FS0) ∩ . . . ∩ Z(FSn
)) ,

contains no more than r consecutive elements from any arithmetic progression with 
rational common differences, which will then immediately imply both (i) and (ii).

Assume the contrary of (ii), suppose that y, y + d, . . . , y + (r − 1)d ∈ Y for some 
d ∈ Q \ {0} and y ∈ R, then we have

0 = FS(y + jd) =
∑
s∈S

e2πis(y+jd), j = 0, 1, . . . , r − 1. (4)

Consider now a new equivalence relation

s ∼ s′ ⇔ e2πisd = e2πis′d,

which in turn induces a new partition on S:

S = S′
1 ∪ . . . ∪ S′

m, (5)

where each of S′
1, . . . , S

′
m is an equivalence class under this new equivalence relation. 

Pick any s′k ∈ S′
k (k = 1, . . . , m), and set

zk = e2πis′kd,

then (4) becomes

0 = FS(y + jd) =
m∑

zjkFS′
k
(y), j = 0, 1, . . . , r − 1,
k=1
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which can be viewed as a linear system by applying an r ×m sub-matrix from a Van-
dermonde matrix to the vector 

(
FS′

1
(y), . . . , FS′

m
(y)

)T . As r ≥ m and z1, . . . , zm are 
distinct, the matrix has full rank and thus the solution is trivial, i.e.,

FS′
1
(y) = . . . = FS′

m
(y) = 0.

Notice that the partition (5) is finer than the partition (3) since d ∈ Q, hence the above 
actually implies that

FS0(y) = . . . = FSn
(y) = 0,

i.e., y ∈ X, which is a contradiction since we have assumed that X∩Y = ∅ and y ∈ Y . �
It is shown in [28] using [11,12,43] and [32,46] that Y ∩ Z is of zero density and in 

fact finite.

3. Technical preparations

In this part we will better describe the torsion part S of a spectrum TZ +S by looking 
into properties of FS .

Denote δt as the Dirac distribution at t. Given a function f : R → C, we write

f̃(x) = f(−x),

and let ∗ be the convolution operator, i.e.,

(f ∗ f)(x) =
∫
R

f(t)f(x− t)dt.

For a region Ω ⊂ R, denote its difference set by

Ω − Ω = {x− x′ : x, x′ ∈ Ω, x �= x′}.

It is then easy to see that (Ω − Ω) ∪ {0} is the support of 1Ω ∗ 1̃Ω.

Lemma 4. Let Ω ⊂ R be a region of measure 1, if Ω is a spectral set with spectrum

Λ = TZ + S,

for some T ∈ N and some finite set S ⊂ [0, T ), and

E = (Ω − Ω) ∩ T−1Z, (6)

then we have
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E ⊆ Z(FS).

Proof. With (2) in Lemma 1 we have for any f ∈ L2(Ω) with ‖f‖L2(Ω) = 1 that

∑
λ∈Λ

|f̂(ξ − λ)|2 = 1.

Applying the inverse Fourier transform to both sides of the equation we get

(
f ∗ f̃

)
(x) ·

∑
λ∈Λ

e2πiλx = δ0, (7)

where the equality holds in the sense of tempered distributions.
Applying the distributional Poisson summation formula on (7) we obtain

(
f ∗ f̃

)
(x) · FS(x) · 1

T

∑
k∈Z

δ k
T

= δ0. (8)

Now taking 1Ω as f , then for (8) to hold we necessarily have E ⊆ Z(FS). �
Remark. Consider H, S ⊂ Zn, Ω = [0, 1] +H and Λ = Z +n−1S, then Λ is the spectrum 
of Ω if and only if S is the spectrum of H (see Definition 6) in Zn. For the setting in Zn

it is easy to see that S is the spectrum for H if and only if

H −H ⊆ Z(Fn−1S),

thus Lemma 4 is simply the continuous analog of this characterization.

Lemma 5. Let Ω ⊂ R be a region of measure 1, suppose that Ω is spectral with spectrum

Λ = TZ + S,

for some T ∈ N and some finite set S ⊂ [0, T ). Assume further that 0 ∈ Λ. Denote

R = max{t− t′ : t, t′ ∈ T−1Z ∩ Ω}, (9)

then FS is R + T−1 periodic on T−1Z, i.e.,

FS(t + R + T−1) = FS(t),

holds for any t ∈ T−1Z.

Proof. Without loss of generality let us assume that

Ω ⊆ [0, R + T−1) and 0 ∈ Ω. (10)
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This assumption is legitimate since Ω is compact and shifting does not change spectrums.
Apparently Λ \ {0} is a subset of Λ − Λ, and recall that 1̂Ω(0) equals the measure of 

Ω, which is 1, thus together with (1) we have

1̂Ω ·
∑
λ∈Λ

δλ = 1̂Ω(0)δ0 = δ0,

where the equality holds in the sense of tempered distributions. Applying the inverse 
Fourier transform to both sides of the equation we obtain

1Ω(x) ∗
∑
λ∈Λ

e2πiλx = 1.

With the assumption that Λ = TZ +S and the distributional Poisson summation formula 
we get

1Ω(x) ∗ (FS(x) · 1
T

∑
k∈Z

δ k
T

) = 1, (11)

which can be further written as
∑
k∈Z

FS( k
T

)1Ω(x− k

T
) = T.

Consider now

x0 = R + k0

T
,

and

x′
0 = R + k0 + 1

T
,

for some arbitrarily chosen k0 ∈ Z. By (10) and (11) we have

T =
∑
k∈Z

FS( k
T

)1Ω(x0 −
k

T
) =

k0+RT∑
k=k0

FS( k
T

)1Ω(R + k0

T
− k

T
) =

k0+RT∑
k=k0

FS( k
T

),

and

T =
∑
k∈Z

FS( k
T

)1Ω(x′
0 −

k

T
) =

k0+RT+1∑
k=k0+1

FS( k
T

)1Ω(R + k0 + 1
T

− k

T
)

=
k0+RT+1∑
k=k0+1

FS( k
T

).
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Subtracting these two equations we get

0 = FS(k0 + RT + 1
T

) − FS(k0

T
),

i.e.,

FS(k0

T
+ R + 1

T
) = FS(k0

T
),

which shows that FS is R + T−1 periodic on T−1Z since k0 is arbitrary. �
4. Rationality of spectrums

The strategy is essentially the same as in [28], some arguments are adjusted to adapt 
to this problem. The periodicity in Lemma 5 plays a vital role here.

Theorem 1. Let Ω ⊂ R be a region of measure 1, if Ω is spectral with spectrum Λ, and 
0 ∈ Λ, then Λ is rational.

Proof. By Lemma 2, we may write Λ as

Λ = TZ + S,

where T ∈ N, and S ⊂ [0, T ) is a finite set. Let E be as defined in (6), Lemma 4 then 
shows that

E ⊂ Z(FS).

Now by Lemma 5, FS is periodic on T−1Z with period R+T−1 where R is as defined 
in (9), thus if we denote

K = (R + T−1)Z + E,

then this periodic set K is included in Z(FS). Now let

SQ = S ∩Q, ΛQ = Λ ∩Q = TZ + SQ,

then SQ is non-empty since 0 ∈ S.
Observe that (1) in Lemma 1 is satisfied on ΛQ as obviously we have

ΛQ − ΛQ ⊆ Λ − Λ ⊆ Z(1̂Ω).

On the other hand, by Lemma 3, FSQ
and FS share the same set of rational periodic 

zeros, thus we will also have
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K ⊆ Z(FSQ
). (12)

Consequently (2) in Lemma 1 is still satisfied if we replace Λ with ΛQ, since (7) and (8)
will still hold due to (12) if S is replaced by SQ.

Therefore by Lemma 1, ΛQ is also a spectrum of Ω, which is a contradiction if SQ is 
only a proper subset of S. Hence we can conclude that

S = SQ. �
An immediate consequence of Theorem 1, combined with periodicity and rationality 

results in [16,28], is the equivalence between the Fuglede conjecture for regions in R and 
for Zn (for all n ∈ N).

It is most convenient to introduce tiling sets and spectral sets in Zn through the 
Fourier matrix. The n × n Fourier matrix W is defined as the matrix whose rows and 
columns are both indexed by Zn and whose jk-th entry is simply n−1/2e2πijk/n for 
j, k ∈ Zn (with 0 identified as n). If H, S ⊆ Zn, then we shall denote WH,S as the 
submatrix in W composed by taking row indices from H and column indices from S.

Definition 5. A subset H is said to tile Zn by H ′ (or to complement H ′ in Zn, or simply 
to be tiling in Zn), if there exists another subset H ′ with H × H ′ = Zn, so that each 
element g ∈ Zn can be uniquely decomposed as g = h + h′ with h ∈ H and h′ ∈ H ′.

Definition 6. A subset H is said to be spectral in Zn, if there exists another subset S so 
that the submatrix WH,S is orthogonal. S is then called the spectrum of H.

Definition 7. A complex Hadamard matrix is an orthogonal complex matrix in which all 
entries have same moduli.

Since all entries in W have same moduli, it is also equivalent to say that H is spectral 
with spectrum S in Zn if WH,S is a complex Hadamard submatrix in W .

The Fuglede conjecture in Zn then says that a subset is spectral in Zn if and only if 
it is tiling in Zn.

Corollary 1. The Fuglede conjecture for regions in R is true if and only if the Fuglede 
conjecture for Zn is true for all n ∈ N. To be more precise, tiling to spectral in R is true 
if and only if it is true in Zn for all n ∈ N, and similarly spectral to tiling in R is true 
if and only if it is true in Zn for all n ∈ N.

Proof. See [8, Theorem 1.3, Theorem 3.2].
The proof relies on a bunch of technical steps which are not to be repeated here. 

The essential part is structure theorems established in [28] for tiling sets and [16] for 
spectral sets, which says a tiling (resp. spectral) region Ω of unit measure can be written 
as 

⋃
Bk + sk where 

⋃
Bk is a partition of the interval [0, n−1) and sk are elements from 
k k
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n−1Zn for some n ∈ N. These structure theorems lead to correspondences between Ω
and the row index set H of submatrices in W . �

It is also worth mentioning that the Fuglede conjecture in Zn and in R is also equiv-
alent to the so called universal tiling (resp. spectrum) conjecture which says that sets 
with the same tiling complement (resp. spectrum) also share the same spectrum (resp. 
tiling complement). The concept of either a universal tiling set or a universal spectral 
set are easy to grasp by looking at Hadamard submatrices of the Fourier matrix. These 
conjectures are proposed in [29] and [9], they are shown (also in [9]) to be false in R3

and higher dimensions, but are still open in R and R2.
The case on Rd for d ≥ 2 is much more complicated, tiling complements or spectrums 

need not be periodic or rational in general even for nice domains. For example, {(a, √aπ+
b)}a,b∈Z is a tiling complement of the unit square in R2, but it is neither rational nor 
periodic. That whether any tiling region in Rd would admit at least one periodic tiling 
complement (to be precise, a d-periodic tiling complement) is known as the periodic 
tiling conjecture (proposed also in [28]), and has recently been disproved for d ≥ 3 [14], 
on R2 it remains open but on Z2 it has actually been established lately [3,13]. Thus 
there are still large gaps to extend Corollary 1 to d = 2, while for d ≥ 3 it is possibly 
false (at least the method in the proof of Corollary 1 can no longer be used).

Data availability

No data was used for the research described in the article.
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