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Abstract. Let pa be a prime power and n0 a square-free number. We prove
that any complementing pair in a cyclic group of order pan0 is quasi-periodic, with
one component decomposable by the the subgroup of order p. The proof is by
induction and reduction since the presence of the square-free factor n0 allows us to
perform a Tijdeman decomposition. We also give an explicit example to show that
Z72 is the smallest cyclic group that fails to have the strong Tijdeman property.

1. Introduction

Definition 1. A multiset is a collection of elements in which elements
are allowed to be repeated. A simple set (i.e., a set in the usual sense) is
then a special case of multisets in which every element has multiplicity 1.

The operation of taking subsets, unions, and intersections in this article
are used only on simple sets and yield only simple sets. If A is a simple set
and k ∈ N, then we use A⊗k to indicate the multiset in which every element
of A is repeated k times.

Definition 2. Let A,B be subsets of an additive Abelian group G.
We use A+B for the multiset formed by elements of form a+ b (computed
within G) where a, b are enumerated from A, B respectively. We write
A⊕B if A+B is actually a simple set.

If g ∈ G and A ⊆ G, then we use the notation g +A for the simple set
{g + a : a ∈ A} where g + a is computed within G.

Definition 3. A subset A is said to tile an additive Abelian group G
by B (or to complement B in G, or simply to be tiling in G), if there is
some B ⊆ G with A⊕B = G, so that each element g ∈ G can be uniquely
decomposed as g = a+ b with a ∈ A and b ∈ B. In such cases we shall call
(A,B) a complementing pairing in G.
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Definition 4. A subset A of an additive Abelian group G is said to be
periodic, if g+A = A holds for some non-trivial element g ∈ G. Equivalently
A is periodic if and only if A = H ⊕A′ for some subset A′ ⊂ A and some
subgroup H �G that contains g (in particular, A′ is allowed to be trivial,
which means that A is a subgroup). A complementing pair (A,B) in G is
called periodic if at least one of A,B is periodic. If all complementing pairs
in G are periodic, then G is called a “good” group.

The study of such decompositions is initiated by Hajós [4] in order to
solve a problem posed by Minkowski. Based also on works of de Brujin
[1] and Rédei [7], a complete list of “good” groups is given by Sands [8,9]
(alternatively see expository parts in e.g., [13,14,20]), namely

Rank 1: (p, q, r, s), (p2, q, r), (pa, q), (p2, q2),

Rank 2: (32, 3), (2a, 2), (22, 22), (p, p),

Other: (p3, 2, 2), (p, 22, 2), (p, 3, 3), (p, q, 2, 2), (p2, 2, 2, 2), (p, 2, 2, 2, 2),

where a ∈ N, p, q, r, s are distinct prime numbers, notions such as (p, q, r, s)
means Zp × Zq × Zr × Zs, where

Zn =
{
0, 1, . . . , n− 1

}
,

is the additive cyclic group of n elements, and p, q are allowed to be 2 and
3 in cases of e.g., (p, 22, 2), (p, 3, 3), (p, q, 2, 2), etc.

Definition 5. A complementing pair (A,B) in an additive Abelian
group G is said to be quasi-periodic, if at least one of A,B, say B, can
be partitioned into m equal-sized subsets B(0), . . . , B(m−1), and there is an
order m subgroup H = {h0, . . . , hm−1} in G with h0 = 0 so that

A⊕ B(k) = hk + A⊕ B(0),

holds for each k ∈ {0, . . . ,m− 1}. In such case we shall call B decompos-
able by H in this complementing pair. G is said to be quasi-periodic if all
complementing pairs in it are quasi-periodic.

Example 1 [1]. A decomposition that is quasi-periodic but not periodic:

Z72 = {0, 8, 16, 18, 26, 34} ⊕ {0, 5, 6, 9, 12, 29, 33, 36, 42, 48, 53, 57}

= {0, 36} ⊕ {0, 8, 16, 18, 26, 34} ⊕ {0, 6, 9, 12, 33, 57}.

Conjecture 1 (Hajós). All finite cyclic groups are quasi-periodic.

Definition 5 is from [3], originally periodic sets instead of subgroups were
used to define quasi-periodicity. These two definitions are equivalent, see e.g.
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[19, Chapter 5.2] or [12]. Initially Hajós made the above conjecture for all
finite Abelian groups [4], but a counterexample was found later in Z5 × Z25
[10]; for other counterexamples see e.g., [12] and references there. Appar-
ently periodic decompositions are also quasi-periodic, thus “good” groups are
quasi-periodic. A few classes of non-cyclic quasi-periodic Abelian p-groups
are given in [12,17]. It is also shown in [12, Theorem 9] that Zpqrst with p, q,
r, s, t being distinct prime numbers is quasi-periodic. To the author’s knowl-
edge, the strongest result so far is [19, Theorem 5.13] (which is taken from
[18]) for quasi-periodicity of G×Zq, where G is a finite Abelian group and q
is a prime number that does not divide |G|. It is proved there that if (A,B)
is a complementing pair in G× Zq, then one component is decomposed by
the subgroup of order q.

Definition 6. A natural number s is said to be a simple factor of n if
s | n but s2 � n. A natural number n is called (i) a square-free number if it
equals 1 or every prime divisor of it is also a simple factor of it, (ii) a prime
power if it has only one prime divisor.

Let pa be a prime power and n0 a square-free number, the main pur-
pose of this article is to prove that any complementing pair in a cyclic group
of order pan0 is quasi-periodic, with one component decomposable by the
the subgroup of order p. The proof is by induction and reduction since the
presence of the square-free factor n0 allows us to perform a Tijdeman decom-
position. We also give an explicit example to show that Z72 is the smallest
cyclic group that fails to have the strong Tijdeman property (which will be
introduced in the last part).

2. Preliminaries

Let S be a subset of an additive Abelian group G, denote the difference
set of S as the simple set

ΔS =
{
s− s′ : s, s′ ∈ S, s �= s′

}
,

where s− s′ is computed within G.

Lemma 1. Let A,B be subsets of an additive Abelian group G. Then

A+B = A⊕ B ⇔ ΔA ∩ΔB = ∅.

Proof. Clearly A+B = A⊕B if and only if the map

(a, b) 
→ a+ b, a ∈ A, b ∈ B,

is injective. This map is not injective if and only if there exist distinct
a, a′ ∈ A and b, b′ ∈ B with a+ b = a′ + b′, i.e., a− a′ = b′ − b, which means
ΔA ∩ΔB �= ∅. �
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Let us write gcd(a, b) and gcd(A) for the greatest common divisor of
a, b ∈ N and elements in A ⊆ Zn respectively. If p | n, then we use the nota-
tion 〈p〉 for the subgroup generated by p (thus of order n/p) in Zn. Clearly
A ⊆ 〈p〉 if and only if p | gcd(A).

Let A be a subset of an additive Abelian group G. To avoid confusion,
we shall only use the notation

mA =
{
a+ . . . + a︸ ︷︷ ︸

m times

: a ∈ A
}
,

if the lifting A → mA is injective. Here the addition is computed within G.
Similarly if G is Z or Zn, then

Am =
{
a mod m : a ∈ A

}
⊆ Zm,

is used only if the projection A → Am is injective.

Proposition 1 [20]. Let G be Z or Zn, and B a finite subset of G. If

(A,B) is a complementing pair in G, and h ∈ N with gcd(h, |B|) = 1, then
(A,hB) is still a complementing pair in G.

Proof. The case of G = Z is shown in [20, Theorem 1]. The case of
G = Zn then follows by considering the tiling nZ⊕A⊕ B. �

One should also notice the subtle difference concerning divisions in this
proposition. If G = Z and h | gcd(B), then (A,h−1B) is still a comple-
menting pair, but when G is finite, then the same need not hold un-
less gcd(h, n) = 1, e.g., if B = {0, 1, 2}, B′ = 2B = {0, 2, 4}, then Z = 3Z
⊕B = 3Z⊕ B′. However, if A′ = {0, 1}, then Z6 = A′ ⊕B′, but (A′, B) is
not a complementing pair in Z6.

Lemma 2. Let (A,B) be a complementing pair in Zn, and p | n. If B ⊆
〈p〉, then B is tiling in 〈p〉, and A can be partitioned into p subsets A(0),
. . . , A(p−1) so that for each k ∈ Zp, we have A(k) = sk + C(k), where we can

choose S = {s0, . . . , sp−1} to be any set that complements 〈p〉 in Zn. Each

(C(k),B) is a complementing pair in 〈p〉 regardless how S is chosen (despite
that C(k) changes with sk). In particular, A(0), . . . , A(p−1) do not depend

on B.

Proof. For each k ∈ Zp, set A(k) = A ∩ (k + 〈p〉), and ak = |A(k)|. By
this construction A(k) does not depend on B, and clearly A(0), . . . , A(p−1)

form a partition of A.
Applying the projection g 
→ g mod p (g ∈ Zn) on the decomposition

Zn = A⊕ B =
(
A(0) ∪ · · · ∪A(p−1)) ⊕B,
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we obtain

Z
⊗n

p

p =
(
{0}⊗a0 ∪ · · · ∪ {p− 1}⊗ap−1

)
⊕ {0}⊗b.

where b = |B|. Comparing both equations we see that

a0 = · · · = ap−1 =
n

bp
,

and A(k) ⊕B = k + 〈p〉, thus (A(k) − k,B) is a complementing pair in 〈p〉.
Now if (S, 〈p〉) is a complementing pair in Zn, then we set sk = S ∩

(k + 〈p〉), and C(k) = A(k) − sk. By this construction we have C(k) ⊆ 〈p〉,
and

ΔC(k) = Δ(A(k) − sk) = Δ(A(k) − k),

therefore by Lemma 1 we can conclude that (C(k), B) is also a complement-
ing pair in 〈p〉. �

3. Main results

3.1. Quasi-periodicity. Since some multi-mappings are involved here
let us further agree on the following notation: if A ⊂ Zn with p | gcd(A), then
p−1A means the unique set A′ ⊆ Z�n/p� (�n/p� is the largest integer not ex-
ceeding n/p) such that pA′ = A. For example, if A = 2B = {0, 2, 4} ⊂ Z6,
then B can be any of {0, 1, 2}, {0, 4, 2}, {0, 1, 5}, {0, 4, 5}, but by 2−1A we
mean the set {0, 1, 2}.

Lemma 3. If n = qm, and B ⊆ Zn, then the lifting b 
→ qb mod n is in-

jective on B if and only if the projection b 
→ b mod m is injective on B, and
in such case we have q−1(qB) = Bm.

Proof. The lifting is not injective if and only there are distinct b, b′ ∈ B
such that

q(b− b′) ≡ 0 (mod n),

while the projection is not injective if and only there are distinct b, b′ ∈ B
such that (b− b′) ≡ 0 (mod m), and both lead to the same equivalent condi-
tion that ΔB ∩ 〈m〉 �= ∅, which shows that their injectivities are equivalent.

Suppose now that they are injective, then writing every element b ∈ B
into the form b = xbm+ yb, with xb ∈ Zq and yb ∈ Zm we obtain q−1(qB) =
Bm = {yb : b ∈ B}. �

Theorem 1. If n = pan0 where n0 is a square-free number, p is a prime

number that does not divide n0 and a ∈ N, then Zn is quasi-periodic.
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Proof. Let H be the order p subgroup in Zn, and τ(n0) the number of
prime divisors of n0. We shall establish the following statement by induction
on τ(n0):

(Q) Any complementing pair in Zn is quasi-periodic, with one component
decomposable by H .

If τ(n0) = 0, then n0 = 1 and (Q) holds trivially since Zpa is a “good”
group and thus periodic, and clearly the periodic component in any comple-
menting pair is decomposable by H .

Suppose (Q) holds for τ(n0) < t, and consider now the case of τ(n0) = t.
Let (A,B) be a complementing pair in Zn, and let q be a prime divisor of
n0. Denote

m =
n

q
= pa ·

n0

q
.

Since q is a simple factor of n, it can divide precisely one of |A|, |B|, say |A|
without loss of generality. By Proposition 1, (A, qB) is then also a comple-
menting pair in Zn. Consequently by Lemma 2, A can be partitioned into q
subsets A(0), . . . , A(q−1) where

A(k) = k + C(k),

for every k ∈ Zq, and each (C(k), qB) is a complementing pair in 〈q 〉. By
Lemma 3 each (q−1C(k), Bm) is also a complementing pair in Zm . In par-
ticular, since τ(n0/q) = t− 1 < t, the induction assumption applies and (Q)
holds in Zm. Notice also that the order p subgroup in Zm is q−1H , and let
us further write out elements in H as {h0, . . . , hp−1} with

hj =
jn

p
= jpa−1n0,

for each j ∈ Zp.
If Bm is decomposable by q−1H , then it can be partitioned into p equal-

sized subsets B(0)
m , . . . , B

(p−1)
m so that

q−1C(k) ⊕ B(j)
m = q−1hj + q−1C(k) ⊕B(0)

m ,

holds for each j ∈ Zp. Consequently with B(j) = qB
(j)
m we get

C(k) ⊕ B(j) = hj + C(k) ⊕B(0),

and therefore

A⊕B(j) =
⋃

k∈Zq

(k+C(k))⊕B(j) = hj +
⋃

k∈Zq

(k+C(k))⊕B(0) = hj+A⊕B(0),
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holds for each j ∈ Zp. And clearly B(0), . . . ,B(p−1) is an equal-sized partition
of B since

|B(j)| = |B(j)
m | =

1
p
|Bm| =

1
p
|B|,

holds for each j ∈ Zp. This shows quasi-periodicity of (A,B) with B decom-
posable by H .

If Bm is not decomposable by q−1H , then by the induction assumption
each q−1C(k) must be decomposable by q−1H , and thus it can be partitioned
into p equal-sized subsets q−1C(k,0), . . . , q−1C(k,p−1) so that

q−1C(k,j) ⊕ Bm = q−1hj + q−1C(k,0) ⊕ Bm,

holds for each j ∈ Zp and k ∈ Zq. Consequently with C(k,j) = q(q−1C(k,j))
we get

C(k,j) ⊕ B = hj + C(k,0) ⊕B,

and therefore with

A(j) =
⋃

k∈Zq

k + C(k,j),

we obtain similarly an equal-sized partition of A and

A(j) ⊕B =
⋃

k∈Zq

(k+C(k,j))⊕B = hj+
⋃

k∈Zq

(k+C(k,0))⊕B = hj +A(0) ⊕B,

which again shows quasi-periodicity of (A,B) with A decomposable by H .
�

Remark. Using the same setting and notations as in the proof of The-
orem 1, as Zpan0

= Zm× ===== mathbbZq, we can see by [19, Theorem
5.13] that A is decomposable by the subgroup of order q, while Theorem 1
says that one of A, B is decomposable by the subgroup of order p.

3.2. An example concerning the strong Tijdeman property.

Definition 7. A subset of Zn is said to be normalized if it contains 0.
A normalized tiling set A with gcd(A) = 1 is said to have the

• strong Tijdeman property: If all its normalized tiling complements are
included in the same proper subgroup (which depends only on A).

• Tijdeman property: If each of its normalized tiling complement is
included in some proper subgroup (which may vary for different tiling com-
plements).

• weak Tijdeman property: If it has a normalized tiling complement
that is included in some proper subgroup.

7QUASI-PERIODICITY OF Zpan0
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Zn is said to have the Tijdeman property (resp. strong/weak Tijdeman
property) if all such tiling sets A have the the Tijdeman property (resp.
strong/weak Tijdeman property).

The normalization condition is vital and shall not be dropped or over-
looked.

The Tijdeman property is also called the Rédei property in some liter-
ature. Tijdeman conjectured that all finite cyclic groups have the Tijde-
man property, while Coven and Meyerowitz noticed in [2] that decomposi-
tions constructed in [15] fail to have even the weak Tijdeman property. The
smallest n for such counterexamples is n = 5400, a decomposition that fails
to have the Tijdeman property with n = 900 is available in [5]. On the other
hand, [6] showed that all cyclic “good” groups possess the strong Tijdeman
property, and it is also shown in [11] (alternatively see [2, Lemma 2.4] or
[16, Theorem 9.3.1]) that Zpaqb with p, q being distinct prime numbers and
a, b ∈ N has the Tijdeman property.

It was mentioned in both [20] and [6] without details that the Tijdeman
property would imply quasi-periodicity. We are not able to locate a source
for a proof (except a partial one in [12, Theorem 8] for square-free n), neither
can we produce one unfortunately.

We conclude this article by providing an explicit counterexample to the
strong Tijdeman property in Z72, so that besides those counterexamples to
the Tijdeman property and the weak Tijdeman property in [5] and [15] re-
spectively, we now have a full collection of counterexamples to each of the
properties in Definition 7. It is easy to see from the list of “good” groups that
Z72 is also the smallest cyclic group that fails to have the strong Tijdeman
property.

If A ⊂ Zn, then define

FA(z) =
∑
a∈A

za.

Denote Φm as the m-th cyclotomic polynomial, if (A,B) is a complementing
pair in Zn, then
(1)
FA(z) ·FB(z) ≡ FZn

(z) ≡ 1+z + · · · + zn−1 ≡
∏

m|n
m�=1

Φm(z) (mod zn − 1).

If (A,B) is a complementing pair in Zp3q2 (p, q are distinct prime num-
bers) with 0 ∈ A∩B and gcd(A) = 1, then a simple but tedious (thus omit-
ted here) combinatorial analysis indicates that to show the strong Tijdeman
property fails, one should look for B with |B| = pq and Φp2 ,Φq2 | FB . By a
computer aided verification we obtain the following:

8 N. SILAS and H. TIAN
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Example 2. If

A = {0, 1, 4, 5, 8, 9, 36, 37, 40, 41, 44, 45},

A′ = {0, 1, 2, 9, 10, 11, 36, 37, 38, 45, 46, 47},

so that 0 ∈ A,A′, gcd(A) = gcd(A′) = 1 with

FA(z) = Φ2(z)Φ3(z)Φ6(z)Φ8(z)Φ12(z)Φ24(z)Φ72(z),

FA′(z) = Φ2(z)Φ3(z)Φ6(z)Φ8(z)Φ18(z)Φ24(z)Φ72(z),

and

B = {0, 3, 6, 18, 21, 24}, B′ = {0, 2, 12, 14, 24, 26},

so that 0 ∈ B,B′ with

FB(z) = Φ4(z)Φ9(z)Φ12(z)Φ36(z), FB′(z) = Φ4(z)Φ9(z)Φ18(z)Φ36(z),

then

Z72 = A⊕B = A⊕ B′ = A′ ⊕B = A′ ⊕B′,

but clearly B ⊂ 〈3〉 while B′ ⊂ 〈2〉.
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