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The channel identification problem for multiple-input
multiple-output (MIMO) channels under linear constraints 
can be formulated as solving a linear system which involves 
finite-dimensional Gabor matrices and a pre-determined un-
structured matrix that represents the linear constraints. While 
matrices of the latter type are fixed a priori by the constraints, 
Gabor matrices depend on the choice of their generating win-
dows which is often chosen by the user. This is important since 
even if the matrix associated with the linear constraints is ill-
conditioned, the full system may be solvable if the windows 
are designed appropriately.
We prove that linear constraints consisting of a single equa-
tion always remove a single degree of freedom in the channel 
identification problem, in the sense that preknowledge of such 
constraints allows identification of MIMO channels with sup-
port size one greater than the fundamental limit. However, we 
give an explicit example showing that this statement does not 
generalize to the case of multiple constraints. In the single-
input single-output (SISO) case, we provide some sufficient 
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conditions on the linear side constraints under which the cor-
responding SISO channels are identifiable.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

System identification is an important and challenging task in a variety of areas of 
science and engineering such as physics, communications and control theory. The problem 
is to identify a linear system H from its response Hg to a test signal g. In particular, 
we ask which systems can be identified by such a probing scheme and how one has to 
design the test signal g in order to identify a given class of systems.

This paper is motivated by the channel identification problem for continuous-time 
multiple-input multiple-output (MIMO) channels H : (L2(R))N → (L2(R))M ,

H

⎛⎝ f1
...
fN

⎞⎠ =

⎛⎝ H1,1 . . . H1,N
...

...
HM,1 . . . HM,N

⎞⎠⎛⎝ f1
...
fN

⎞⎠ =

⎛⎜⎝
∑N

n=1 H1,nfn
...∑N

n=1 HM,nfn,

⎞⎟⎠ , (1)

where each subchannel Hm,n is an operator of the form H : L2(R) → L2(R) with

(Hf)(x) =
¨

R×R

ηH(t, ν)MνTtf(x) dν dt, f ∈ L2(R). (2)

Here, N and M are the number of inputs and outputs, respectively, ηH(t, ν) is the 
spreading function of H, Tt is translation (time shift) by t ∈ R, that is, Ttf(x) = f(x −t), 
and Mν is modulation (frequency shift) by ν ∈ R, that is, Mνf(x) = e2πiνx f(x). If 
N = M = 1, we call H = {H1,1} a Single-Input Single-Output (SISO) channel.

The identification problem for MIMO channels of the form (1) can be reduced [1,2]
to identifying a finite-dimensional system H : (CL)N → (CL)M ,

H =

⎡⎣ H1,1 · · · H1,N
...

...
HM,1 · · · HM,N

⎤⎦
where each subsystem Hm,n : CL → CL is of the form

Hm,n =
L−1∑
k,�=0

ηm,n(k, �)M �T k. (3)

Here, T and M denote translation and modulation on CL. They are defined by 
Tx = (x1, . . . , xL−1, x0) and Mx = (ω0x0, ω1x1, . . . , ωL−1xL−1) with ω = e2πi/L, 
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respectively. This reduction allows us to carry out most of the analysis on identifiability 
in a finite-dimensional setting. Therefore, we focus our attention to the finite-dimensional 
channel identification problem which is formulated in Section 2. Its relation to the cor-
responding continuous-time problem is discussed in detail in Section 5.

Systems of the form (2) are of particular importance in communications as Hf in (2)
describes the propagation of a signal f through a time-varying dispersive communication 
channel [3,4]. In this case H is referred to as a linear time-varying channel with the 
delay-Doppler spreading function ηH . Especially in this communications setting, the 
identification problem for linear systems of the form (2) has drawn much attention in 
the past. In the SISO case, a series of papers [1,5–7] studied necessary and sufficient 
conditions for the identifiability of H in terms of the support set of ηH . More recently, 
ideas from compressive sampling were applied to identify sparsely supported channels 
[8] and extension to stochastic channel models was considered in [9].

During the last decades MIMO communication systems have gained much importance 
because the channel capacity of such systems scales, in principle, linearly with the num-
ber of input and output antennas [10]. However, to achieve this potential gain in channel 
capacity, the signals at the different inputs and outputs have to be uncorrelated. In a 
communication setting, this requires a sufficiently large antenna spacing as well as a 
sufficiently rich scattering environment of the communications channel [11–13]. Apart 
from increasing the channel capacity, deploying a very large number (up to hundreds or 
thousands) of antennas that operate coherently and adaptively helps the signal process-
ing and improves the energy efficiency and reliability of the communication link. This 
paradigm, known as massive MIMO, has gained much interest over the last years [14]. 
On the other hand, the problem of identifying a system certainly gets more demanding 
as the number of inputs and outputs increases [7], simply because for a system with N
inputs and M outputs, one has to identify N ·M individual subsystems. Nevertheless, 
due to potential coupling of antennas and due to fading correlations, these subchannels 
are often not completely independent. In many cases, the relation between subchannels 
can be characterized analytically for specific channel models, see for example, [15,16].

In this paper, we formulate and study the channel identification of deterministic SISO 
and MIMO systems whose subchannels have some a priori known linear relationship. 
The linear relations are expressed in terms of linear constraints that can accommodate 
relations between subchannels (for example, antenna coupling and fading correlations) 
as well as relations within each subchannel. We would like to emphasize that the focus of 
this paper is in the deterministic setting. Also, we assume that the spreading support of 
each subchannel is known [2,17,18]. The corresponding problem in the stochastic setting 
is to be treated in a forthcoming work.

This paper is organized as follows. In Section 2, we give a detailed review on the 
finite-dimensional channel identification problem and then formulate our main problem 
on the identification of SISO and MIMO channels under linear side constraints. Sec-
tion 3 is devoted to the SISO case, in particular, it is shown that linear side constraints 
consisting of a single equation always remove a single degree of freedom from the SISO 
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channel identification problem. We also provide some sufficient conditions on the linear 
side constraints under which the corresponding SISO channels are identifiable. We extend 
the SISO results to the MIMO setting in Section 4. Applications in the continuous-time 
setting are discussed in Section 5, followed by some concluding remarks in Section 6. All 
proofs are collected in Section 7.

2. Background and problem formulation

In this section, we shall first review the finite-dimensional channel identification prob-
lem and then formulate our main problem which takes into consideration linear side 
constraints. We shall also develop the necessary mathematical background for the prob-
lem at hand. The transition to continuous-time channels is discussed later in Section 5.

2.1. Channel identification in finite dimensions

Identifying a channel prior to using it for communication is a classical problem in 
electrical engineering. Communication channels, such as satellite, radio, microwave, can 
be modeled in finite dimensions as linear combinations of discrete time-frequency shift 
operators M �T k, k, � = 0, . . . , L − 1, where T , M : CL → CL are the cyclic1 time shift 
and frequency shift operators defined respectively by

Tx = (x1, . . . , xL−1, x0),

Mx = (ω0x0, ω
1x1, . . . , ω

L−1xL−1) with ω = e2πi/L.

Since {M �T k}L−1
k,�=0 forms a basis of L(CL, CL), every linear single-input single-output 

(SISO) channel can be expanded in the form of (3) with unique coefficients η = η(H) =
{η(k, �)}L−1

k,�=0 called the spreading coefficients of H [19, Lemma 1]. These coefficients 
encode all the characteristics of H , for example, each coefficient η(k, �) can be seen 
as a gain factor associated with a transmission path with respective time-delay k and 
frequency shift � caused by the Doppler effect.

In this setting, the channel identification problem asks whether there exists a vector 
c ∈ CL such that every matrix of the form (3) with some restrictions (e.g., sparsity) on 
η can be uniquely recovered from Hc.

Definition 1. A class of linear operators H ⊂ L(CL1 , CL2) is identifiable if there exists a 
vector c ∈ CL1 such that the map

Φc : H −→ CL2 , H �→ Hc

is injective. Such a vector c is called an identifier for H.

1 Cyclic time shifts are certainly not an accurate representation of time delays that occur in communication 
channels. To transition from non-cyclic to cyclic shifts, a cyclic prefix may be applied.
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If H is an identifiable linear space then it is necessarily of dimension less than or equal 
to L.

Using the representation (3), any set of operators H ⊂ L(CL, CL) can be expressed 
in terms of spreading coefficients, that is,

H =

⎧⎨⎩
L−1∑
k,�=0

η(k, �)M �T k : {η(k, �)}L−1
k,�=0 ∈ Ω

⎫⎬⎭
where operators in H and elements in Ω ⊂ CL×L are in one-to-one correspondence. In 
particular, we are interested in operator classes with Ω ⊂ CL×L = CZL×ZL being of 
the form CΛ×{0}(ZL×ZL)\Λ with Λ ⊂ ZL×ZL, where BA denotes the set of functions 
from A to B. Here and subsequently we will abuse notation and not distinguish the sets 
CΛ×{0}(ZL×ZL)\Λ, CΛ, and C|Λ|, as they are all isomorphic.

Definition 2. For Λ ⊂ ZL×ZL, we define the single-input single-output operator Paley-
Wiener space2 by

OPW (Λ) = span{M �T k : (k, �) ∈ Λ} = {H ∈ L(CL,CL) : suppη ⊂ Λ}.

For example, the class of operators consisting of linear combinations of translation 
operators T k, k = 0, 1, . . . , L −1, corresponds to having η(k, �) = 0 for all but � = 0 (i.e., 
the only possible nonzero coefficients are η(0, 0), η(1, 0), · · · , η(L − 1, 0)) and therefore 
can be expressed as OPW (ZL×{0}).

According to Definition 1, the space OPW (Λ) is identifiable if and only if there exists 
a vector c ∈ CL such that for each H ∈ OPW (Λ) the equation

y = Hc =
∑

(k,�)∈Λ

η(k, �)M �T kc = G(c)η (4)

is uniquely solvable in η = {η(k, �)}(k,�)∈Λ ∈ CΛ, where G(c) is the Gabor matrix 
introduced in the next section.

Let us mention that in this paper, we only consider the case where the spreading 
support Λ ⊂ ZL×ZL is known. For the study of identification of operators with unknown 
spreading support, we refer to [2,17,18] and references therein.

2.2. Gabor system matrices

Given a window c ∈ CL, the full Gabor system matrix G(c) is the L×L2 matrix 
whose columns are the time-frequency shifts M �T kc, k, � = 0, . . . , L − 1, of c, that is,

2 The terminology operator Paley-Wiener space stems from the analogous continuous-time identification 
problem which is discussed in Section 5.
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G(c) =
[
c, Mc, . . . , ML−1c

∣∣ Tc, MTc, . . . , ML−1Tc
∣∣

. . .
∣∣ TL−1c, MTL−1c, . . . , ML−1TL−1c

]
=
[
D0WL

∣∣ D1WL

∣∣ · · ·
∣∣ DL−1WL

]
, (5)

where Dk = diag(T kc) = diag(ck, . . . , cL−1, c0, . . . , ck−1) and WL = (e2πinm/L)L−1
n,m=0 is 

the L×L Fourier matrix. For Λ ⊂ ZL×ZL, we denote by G(c)|Λ the submatrix of G(c)
formed with columns indexed by Λ, that is, G(c)|Λ = [M �T kc ](k,�)∈Λ.

Recall that the spark of a matrix A ∈ Cm×N with m < N is the size of the smallest 
linearly dependent subset of columns, that is, spark(A) = min{‖z‖0 : Az = 0, z �= 0}. 
We say that A has full spark if spark(A) = m + 1. Here and in the following, ‖z‖0

denotes the number of nonzero entries in a vector z.
For c �= 0, the L2 columns of G(c) form a tight frame of CL with frame bound L ‖c‖2

2
(see, e.g., [19]) and therefore G(c) always has full rank. Moreover, it is known that there 
exists c so that G(c) has full spark:

Theorem 3 ([19,20]). Let L ∈ N. For any Λ ⊂ ZL×ZL of size L, det(G(c)|Λ) is a non-
trivial homogeneous polynomial of degree L in the variables c0, . . . , cL−1. Consequently, 
there exists a dense open subset S ⊂ CL of full measure such that G(c) has full spark 
for c ∈ S.

Theorem 3 was proved in [19] for L prime by isolating the so-called lowest index 
monomial from the determinant of G(c)|Λ. Later, [20] extended the result to all positive 
integers L ∈ N by finding the so-called consecutive index monomial.

As seen in Equation (4), the Gabor matrix G(c) plays a crucial role in operator 
identification. When restricting Equation (4) to the space OPW (Λ) with Λ ⊂ ZL×ZL, 
that is, if η is supported in Λ, the equation reduces to

y = G(c)|Λ η|Λ.

This implies that OPW (Λ) is identifiable if and only if the matrix G(c)|Λ has linearly 
independent columns. As a direct consequence of Theorem 3, we have the following 
characterization on the identifiability of OPW (Λ).

Corollary 4. The space OPW (Λ) is identifiable if and only if |Λ| ≤ L.

2.3. Multiple-input multiple-output channel operators

In the multiple-input multiple-output (MIMO) setting, say, with N inputs and M
outputs, a communication channel H consists of MN subchannels and is represented by 
the M×N block matrix
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H =

⎡⎣ H1,1 · · · H1,N
...

...
HM,1 · · · HM,N

⎤⎦
where each subchannel Hm,n ∈ CL×L is of the form (3). The corresponding channel 
identification problem asks for the existence of a vector c = (c(1), . . . , c(N)) ∈ (CL)N
such that H can be uniquely recovered from

Hc =

⎡⎣ H1,1 · · · H1,N
...

...
HM,1 · · · HM,N

⎤⎦
⎡⎢⎣ c(1)

...
c(N)

⎤⎥⎦ =

⎡⎢⎣
∑N

n=1 H1,n c
(n)

...∑N
n=1 HM,n c

(n)

⎤⎥⎦ (6)

We will denote by ηm,n = [ηm,n(k, �)]L−1
k,�=0 ∈ CL2 the spreading coefficients of the 

subchannel Hm,n.

Definition 5. For Λ = [Λm,n]Mm=1
N
n=1 with Λm,n ⊂ ZL×ZL, define the MIMO operator 

Paley-Wiener space OPW (Λ) by

OPW (Λ) = {H : Hmn ∈ OPW (Λm,n), m = 1, . . . ,M, n = 1, . . . , N}.

By definition, the space OPW (Λ) is identifiable if there exists c = (c(1), . . . , c(N)) ∈
(CL)N such that the map H �→ Hc is injective on OPW (Λ). Since OPW (Λ) is linear, 
this holds if and only if the conditions Hc = 0 and H ∈ OPW (Λ) imply H = 0.

For the MIMO operator Paley-Wiener space OPW (Λ), we have the following identi-
fiability result.3

Theorem 6 ([7]). The space OPW (Λ) is identifiable if and only if 
∑N

n=1 |Λm,n| ≤ L for 
m = 1, . . . , M .

As a consequence, the space OPW (Λ) is identifiable if and only if for m = 1, . . . , M
the space OPW (Λm) with Λm = {Λm,n}Nn=1 is identifiable. This reflects the fact that 
N -input M -output channels can be separated into M systems of N -input single-output 
channels. Certainly, this simplification fails in the case that we focus on, that is, in the 
case that linear relations between subchannels of different m are present.

Theorem 6 is a direct consequence of the following generalization of Theorem 3.

Theorem 7. For every L, N ∈ N, there exists a dense open subset SN ⊂ (CL)N of full 
measure such that the matrix

G(c(1), . . . , c(N)) :=
[
G(c(1))

∣∣ G(c(2))
∣∣ · · ·

∣∣ G(c(N))
]

∈ CL×NL2
(7)

has full spark for (c(1), . . . , c(N)) ∈ SN .

3 Theorem 6 was first proved in [7] using a different proof technique.
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We can generalize Theorem 7 further to the following theorem.

Theorem 8. For every L, N ∈ N and α = (α1, . . . , αN )T ∈ CN\{0}, there exists a dense 
open subset SN,α ⊂ (CL)N of full measure with the property that the matrix

[G(
∑N

n=1 αnc
(n))|Λ G(c(1))|Λ(1) · · · G(c(N))|Λ(N) ] ∈ CL×L (8)

is invertible for every (c(1), . . . , c(N)) ∈ SN,α and every sets Λ, Λ(1), . . . , Λ(N) ⊂ ZL×ZL

with Λ ∩ (Λ(1) ∪ . . . ∪ Λ(N)) = ∅ and |Λ| + |Λ(1)| + . . . + |Λ(N)| = L.

An application of Theorem 8 is given in Example 33 below. See Section 7.2 for the 
proof of Theorems 7 and 8.

2.4. Linear relations between and within subchannels

The necessary and sufficient condition for the identifiability of OPW (Λ) in Theorem 6
is based on the assumption that all subchannels and their components are independent, 
in the sense that information about one subchannel does not help to identify another. 
In case that linear relations between the subchannels (or their components) are known, 
for example, when transmission and/or receiving antennas are not well separated, one 
should certainly try to take advantage of such information in channel identification.

Let us now formalize the linear relations in terms of linear constraints. In the SISO 
setting, we express the linear relations between the entries of η by the equation

b = Aη.

Including Equation (4), we obtain [
y
b

]
=
[
G(c)
A

]
η.

Further, if η ∈ CL2 is known to be supported in a set Λ ⊂ ZL×ZL, the system reduces 
to [

y
b

]
=
[
G(c)|Λ
A|Λ

]
η|Λ. (9)

In the MIMO setting, by rewriting

Hm,n c
(n) = G(c(n))ηm,n, m = 1, . . . ,M, n = 1, . . . , N,

in (6) we obtain the linear system

[ y1

...
yM

]
= Hc =

⎡⎢⎣
∑N

n=1 G(c(n))η1,n
...∑N

G(c(n))η

⎤⎥⎦

n=1 M,n
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=

⎡⎢⎢⎢⎣
G(c(1), . . . , c(N)) 0 · · · 0

0 G(c(1), . . . , c(N)) · · · 0
...

...
. . .

...
0 0 · · · G(c(1), . . . , c(N))

⎤⎥⎥⎥⎦
⎡⎢⎢⎣
η1
η2
...

ηM

⎤⎥⎥⎦ ,

where G(c(1), . . . , c(N)) = [G(c(1)) | · · · | G(c(N)) ] ∈ CL×NL2 and ηm =
{
ηm,n

}N
n=1 ∈

(CL2)N for m = 1, . . . , M . Similarly, we express the linear relations between and within 
the vectors ηm, m = 1, . . . , M , by the equation

b =
M∑

m=1
Amηm.

Combining the equations leads to4

⎡⎢⎢⎢⎢⎣
y1
y2
...

yM

b

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
G(c(1), . . . , c(N)) 0 · · · 0

0 G(c(1), . . . , c(N)) · · · 0
...

...
. . .

...
0 0 · · · G(c(1), . . . , c(N))
A1 A2 · · · AM

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎣
η1
η2
...

ηM

⎤⎥⎥⎦ .

Under the assumption that ηm = {ηm,n}Nn=1 ∈ (CL2)N is supported in Λm =
{Λm,n}Nn=1 ⊂ (ZL×ZL)N , i.e., suppηm,n ⊂ Λm,n for all m and n, the system reduces 
again to

⎡⎢⎢⎢⎢⎣
y1
y2
...

yM

b

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
G(c(1),...,c(N))|Λ1

0 ··· 0

0 G(c(1),...,c(N))|Λ2
··· 0

...
...

. . .
...

0 0 ··· G(c(1),...,c(N))|ΛM

A1|Λ1
A2|Λ2

··· AM |ΛM

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎣

η1|Λ1
η2|Λ2

...
ηM |ΛM

⎤⎥⎥⎦ . (10)

Now that the linear relations are incorporated into (9) and (10) for SISO and MIMO, 
respectively, the identifiability of the corresponding class of channels with the linear 
relations can be formalized as follows.

4 Organizing the collection of output vectors in a matrix, that is, choosing the representation

[
G(c(1)) ··· G(c(N))

A′
1 ··· A′

N

]
[ η1 ··· ηM ] =

[
y1 ··· yM

b1 ··· bM

]
,

seems more natural. But unfortunately, side constraints would be of the form b1 =∑N
n=1 A′

nη1,n, . . . , bM =
∑N

n=1 A′
nηM,n, which can only encode linear relations within each vec-

tor ηm but not between η1, · · · , ηM .
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Definition 9. The SISO operator Paley-Wiener space OPW (Λ) with constraints b = Aη

is identifiable if there exists a vector c ∈ CL1 such that (9) is uniquely solvable for every 
H ∈ OPW (Λ).

The MIMO operator Paley-Wiener space OPW (Λ) with constraints b =
∑M

m=1 Amηm

is identifiable if there exists (c(1), . . . , c(N)) ∈ (CL)N such that (10) is uniquely solvable 
for every H ∈ OPW (Λ).

We will refer to the constraints b = Aη in the SISO case, respectively b =∑M
m=1 Amηm in the MIMO case, the side constraints associated with OPW (Λ), re-

spectively OPW (Λ).
The following proposition shows that the identifiability of OPW (Λ), respectively 

OPW (Λ), with side constraints depends only on the matrix A, respectively matrices 
Am, m = 1, . . . , M , and not on the choice of b. As the proof is simple, we leave it to the 
reader.

Proposition 10. (a) The SISO operator Paley-Wiener space OPW (Λ) with side con-
straints b = Aη is identifiable by c ∈ CL if and only if the matrix

[
G(c)|Λ
A|Λ

]
(11)

is injective.
(b) The MIMO operator Paley-Wiener space OPW (Λ) with side constraints b =∑M
m=1 Amηm is identifiable by (c(1), . . . , c(N)) ∈ (CL)N if and only if the matrix

⎡⎢⎢⎢⎢⎢⎣
G(c(1), . . . , c(N))|Λ1

0 · · · 0
0 G(c(1), . . . , c(N))|Λ2

· · · 0
...

...
. . .

...
0 0 · · · G(c(1), . . . , c(N))|ΛM

A1|Λ1
A2|Λ2

· · · AM |ΛM

⎤⎥⎥⎥⎥⎥⎦ , (12)

with G(c(1), . . . , c(N)) = [G(c(1)) | · · · | G(c(N))] ∈ CL×NL2 and Λm = {Λm,n}Nn=1 ⊂
(ZL×ZL)N is injective.

This proposition leads us to investigate matrices of the form (11) and (12) for SISO 
and MIMO, respectively.

Note that choosing the empty set of side constraints gives the standard SISO/MIMO 
operator Paley-Wiener spaces. In that case, the matrix (11) is reduced to G(c)|Λ which 
can be made injective if and only if |Λ| ≤ L (see Theorem 3 and Corollary 4). Simi-
larly, the matrix (12) with the last row removed can be made injective if and only if ∑N

n=1 |Λm,n| ≤ L for m = 1, . . . , M (see Theorems 6 and 7).
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Remark 11. The identifiability result for the standard operator Paley-Wiener spaces has 
been reduced by Corollary 4 and Theorem 6 to counting the degrees of freedom involved 
with the spreading support. Therefore, one could expect that a set of linear constraints 
with rank k would remove exactly k degrees of freedom from the channel identification 
problem. As we shall see, this is true in general only for k = 1 and even for this case the 
proof of the argument is not as easy as may be expected. The result cannot be deduced 
simply by counting the degrees of freedom but requires a careful analysis of the block 
matrices appearing in Proposition 10. See part (ii) of Remark 12 for additional remarks 
on degrees of freedom.

Remark 12. (i) It is worthwhile to note that the following statements are equivalent.

(a) The matrix 
[
G
A

]
is injective.

(b) kerG ∩ kerA = {0}.
(c) The positive semi-definite matrix G∗G + A∗A is strictly positive.

(ii) Let us recall that the intersection of two generic subspaces of dimension r and 
s of an L dimensional space is trivial if r + s ≤ L. Hence, for generic G ∈ CL×U and 
A ∈ CK×U with L, K ≤ U , condition (b) holds as long as (U −L) + (U −K) ≤ L, that 
is, 2U ≤ 2L + K. Note further that in our setup, we have U = |Λ|, so it seems as if we 
can compensate any size of Λ as long as we have sufficiently many conditions on A, that 
is, as long as K can compensate for large Λ. But this observation is far from concluding 
our discussion, as both matrices A and G are not generic in our setup. Moreover, the 
question at hand is whether for a given A (not a generic one) we can find a vector c so 
that ker (G(c)|Λ) ∩ kerA = {0}.

(iii) In the SISO setting, imposing the side constraints b = Aη can be understood 
as restricting the vector η ∈ CL2 to the affine subspace {η ∈ CL2 : Aη = b}. Side 
constraints in the MIMO setting can be viewed in a similar manner.

To illustrate how natural and useful the consideration of linear constraints is, we 
give two examples, one in the multiple-input single-output and one in the single-input 
multiple-output setting.

Example 13. (i) In the two-input single-output setting (M = 1, N = 2), Theorem 6
states the necessary and sufficient condition |Λ1,1| + |Λ1,2| ≤ L for OPW (Λ) to be 
identifiable. However, if the channel of interest is known to have an identical component 
in its subchannels, for example, if H = (H1,1, H1,2) satisfies (0, 0) ∈ Λ1,1 ∩ Λ1,2 and 
η1,1(0, 0) = η1,2(0, 0), then by counting the degrees of freedom associated with η1,1 and 
η1,2 one can expect that OPW (Λ) is identifiable even if |Λ1,1| + |Λ1,2| = L + 1. This is 
indeed true and can be verified using Proposition 10. A detailed argument is given in 
Section 7.1.
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(ii) In the single-input two-output setting (M = 2, N = 1), Theorem 6 gives the 
necessary and sufficient condition that |Λ1,1| ≤ L and |Λ2,1| ≤ L, for OPW (Λ) to 
be identifiable. However, if a channel H = (H1,1, H2,1) ∈ OPW (Λ) is known to 
have some identical components in its subchannels, i.e., η1,1|S = η2,1|S for some S ⊂
Λ1,1 ∩ Λ2,1, then it turns out that OPW (Λ) is identifiable if max{|Λ1,1\S|, |Λ2,1|} ≤ L, 
or max{|Λ1,1|, |Λ2,1\S|} ≤ L, or max{|Λ1,1\S| + |Λ2,1\S|, |S|} ≤ L. This allows the 
identification of H even if the classical requirements |Λ1,1| ≤ L and |Λ2,1| ≤ L are not 
satisfied. As an extreme case, H is identifiable when S = Λ1,1 ⊂ Λ2,1 with |Λ1,1| = L

and |Λ2,1| = 2L. See Section 7.1 for a detailed discussion.

Remark 14. To develop an identification procedure for OPW (Λ) with side constraints 
b = Aη involves the following steps. For simplicity, we shall assume 0 = b = Aη. After 
ensuring that the matrix 

[
G(c)|Λ

A

]
has trivial kernel for some, and hence for almost all 

c, we note that kerA = (ranA∗)⊥ is a subspace of CΛ with dimension |Λ| − rankA. 
Let B ∈ C|Λ|×(|Λ|−rankA) be a matrix whose columns form an orthonormal basis of 
kerA = (ranA∗)⊥ ⊂ CΛ. We now pick c ∈ CL so that the embedding

G(c)|Λ ◦B ∈ CL×(|Λ|−rankA)

is bounded below by α and above by β with β/α not too large. The identification problem 
corresponds now to solving

(G(c)|Λ ◦B)x = y

for x and setting η = Bx. If L ≥ |Λ| − rankA and G(c)|Λ ◦ B is left-invertible, then 
the space OPW (Λ) with side constraints b = Aη is identifiable. Note that in case 
L > |Λ| − rankA, we can apply linear regression methods to obtain the least squares 
solution in case that our measurements y are affected by noise.

3. Identification results for SISO channels with constraints

Let us start with SISO channels that have some linearly related components. As in the 
statement of Proposition 10(a), we shall consider SISO channel operators in the space 
OPW (Λ) and represent the linear relations by the equation b = Aη. Then, identifiability 
of OPW (Λ) depends on the injectivity of the matrix given in (11). We will show that 
if A consists of a single row, then the space OPW (Λ) with |Λ| = L + 1 under the 
linear relation b = Aη is always identifiable. Comparing with Corollary 4, this result 
overcomes the fundamental limitation on the size of Λ by taking into account the linear 
side constraints.

Theorem 15. Let Λ ⊂ ZL×ZL with |Λ| = L + 1, and a ∈ CΛ\{0}. There exists c ∈ CL

such that the (L + 1)×(L + 1) matrix 
[
G(c)|Λ

∗

]
is invertible. Moreover, such vectors c
a
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constitute a dense open subset of CL with full measure. Hence, the space OPW (Λ) with 
side constraints b = a∗η|Λ, where b ∈ C and η ∈ CL2 , is identifiable.

The proof of this result relies on the following lemma.

Lemma 16. Let Λ ⊂ ZL×ZL with L + 1 ≤ R = |Λ| ≤ L2. Then

span
{
kerG(c)|Λ : c ∈ S

}
= CΛ,

where S is the set of all c ∈ CL such that G(c) has full spark (cf. Theorem 3).

Unfortunately, to obtain an identifiability result from this lemma requires to restrict 
ourselves to |Λ| = L + 1 as in Theorem 15. The proof of Theorem 15 and Lemma 16 are 
contained in Section 7.3.

Theorem 15 does not allow us to draw conclusions for the case of linear constraints 
with multiple equations. Indeed, if A has multiple rows, the intersection of the row 
spaces of A and G(c)|Λ may depend on the choice of c. Below we give an example of 
Λ ⊂ ZL×ZL with size L +2 and linear constraints of two equations such that the matrix [
G(c)|Λ

A

]
is singular for all c ∈ CL.

Example 17. Let L = 3 and Λ = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1)}. The matrix

[
G(c)|Λ

A

]
=

⎡⎢⎢⎢⎢⎢⎣
c0 c0 c0 c1 c1
c1 ωc1 ω2c1 c2 ωc2
c2 ω2c2 ω4c2 c0 ω2c0
1 1 1 0 0
0 0 0 1 1

⎤⎥⎥⎥⎥⎥⎦
is singular for all c = (c0, c1, c2)T ∈ C3. Indeed, the first row is a linear combination of 
the fourth and the fifth row.

Below we give an example of a matrix A ∈ CL×L2 such that the matrix 
[
G(c)|Λ
A|Λ

]
is 

not injective for every c ∈ CL and Λ ⊂ ZL×ZL of size 2L.

Example 18. If

A = [ IL |M−1 | · · · |M−(L−1) ] ∈ CL×L2
,

then the 2L×L2 matrix 
[
G(c)
A

]
is rank deficient for all c ∈ CL. To see this, observe that 

the row vectors of A can be expressed as

v0 = (1, 1, . . . , 1)T ⊗ e0,
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v1 = (1, ω−1, . . . , ω−(L−1))T ⊗ e1,

...

vL−1 = (1, ω−(L−1), . . . , ω−(L−1)2)T ⊗ eL−1,

where e� is the �-th canonical basis vector. It is easy to see that the sum of all rows of 
G(c) is equal to 

∑L−1
�=0 (

∑L−1
k=0 ωk�ck) v�, hence, the rows of 

[
G(c)
A

]
are linearly dependent.

Note that increasing the ratio of the size of Λ with the number of constraints may help 
to keep the intersection of the row space of A and the row space of G(c)|Λ trivial. But 
Example 18 shows that there exists an L-dimensional subspace in the L2-dimensional 
space, which intersects nontrivially with the L-dimensional row space of G(c) for every 
c ∈ S.

3.1. Sufficient conditions

As seen in Example 17, it is impossible to extend Theorem 15 in full generality to 
linear constraints with multiple equations. However, for some Λ ⊂ ZL×ZL and generic 
A there generally exists a c such that 

[
G(c)|Λ

A

]
is injective. In the following, we present 

some conditions on Λ ⊂ ZL×ZL and A that guarantee the existence of such an identifier 
c. For this we need some definitions.

Definition 19. With each Λ ⊂ ZL×ZL we associate an L-tuple τ (Λ) = τ =
(τ0, τ1, . . . , τL−1), where τk = τk(Λ) := |Λ ∩ ({k}×ZL)| is the number of elements in 
Λ that are of the form (k, �), � ∈ ZL.

Clearly, any L-tuple τ = τ (Λ) with Λ ⊂ ZL×ZL satisfies τ ∈ {0, 1, . . . , L}L and 
‖τ‖1 = |Λ| (referred to as the size of τ ).

Proposition 20. Let Λ ⊂ ZL×ZL be of size L, and τ (Λ) = (τ0, τ1, . . . , τL−1). For every 
monomial cα0

0 cα1
1 . . . c

αL−1
L−1 appearing in det(G(c)|Λ), we have

L−1∑
j=0

j · αj ≡ L(L− 1)/2 +
L−1∑
j=0

j · τj mod L.

Proof. When τ (Λ) = (L, 0, . . . , 0), every generalized diagonal of G(c)|Λ yields the mono-
mial c0c1 . . . cL−1, whose indices add up to 0 +1 +. . .+(L −1) = L(L −1)/2. Now consider 
the general case τ (Λ) = (τ0, τ1, . . . , τL−1). Compared to the case (L, 0, . . . , 0), we have 
τ1 columns with all indices of cj ’s increased by 1 (modulo L), τ2 columns with all indices 
of cj ’s increased by 2 (modulo L), and so on. Therefore, any monomial produced from a 
generalized diagonal of G(c)|Λ has total index sum L(L −1)/2 +τ1+2τ2+. . .+(L −1)τL−1
modulo L. �
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Motivated by Proposition 20, we associate with each monomial in c0, . . . , cL−1 (resp., 
with each L-tuple of size L) an integer-valued index number defined modulo L.

Definition 21. The index number of a monomial m = cα0
0 cα1

1 . . . c
αL−1
L−1 is defined by 

ind(m) =
∑L−1

j=0 j · αj modulo L.

Definition 22. For any τ = (τ0, τ1, . . . , τL−1) ∈ {0, 1, . . . , L}L with ‖τ‖1 = L, the index 
number of τ is defined as ind(τ ) = L(L − 1)/2 +

∑L−1
j=0 j · τj modulo L.

It is straightforward from Definition 22 that ind(Tnτ ) = ind(τ ) for n ∈ ZL. This 
is consistent with the fact that given Λ ⊂ ZL×ZL of size L and n ∈ ZL, there exists 
a constant α �= 0 with det([M �T kc](k,�)∈(n,0)+Λ) = α · det([M �T kc](k,�)∈Λ), where both 
sides are understood as polynomials in c0, . . ., cL−1 (cf. [20, Lemma 4.1]).

Example 23. Let L = 3. All the possible L-tuples τ = (τ0, τ1, τ2) with τ0 + τ1 + τ2 = 3
are (3, 0, 0), (2, 1, 0), (2, 0, 1), (1, 1, 1), up to cyclic shifts. Consider any Λ ⊂ ZL×ZL with 
τ (Λ) = τ .
(i) τ = (3, 0, 0), (0, 3, 0), (0, 0, 3): The only monomial appearing in det(G(c)|Λ) is c0c1c2, 
and ind(τ ) = 0.
(ii) τ = (2, 1, 0), (0, 2, 1), (1, 0, 2): Monomials appearing in det(G(c)|Λ) are c20c1, c0c22, 
c21c2, and ind(τ ) = 1.
(iii) τ = (2, 0, 1), (1, 2, 0), (0, 1, 2): Monomials appearing in det(G(c)|Λ) are c20c2, c0c21, 
c1c

2
2, and ind(τ ) = 2.

(iv) τ = (1, 1, 1): Monomials appearing in det(G(c)|Λ) are c30, c0c1c2, c31, c32, and ind(τ ) =
0.

We are now in position to formulate a sufficiency result for the identification of chan-
nels with constraints.

Theorem 24. Let A = [A0 | A1 | · · · | AL−1] ∈ CL×L2 , where each Ak is an L×L matrix. 
If detAk �= (−1)L−1 · detAk+1 for some k, then the 2L×L2 matrix 

[
G(c)
A

]
has full rank 

for a.e. c ∈ CL. Further, if L is a prime, it is sufficient that detAk �= (−1)L−1 detA�

for some distinct k and �.

Example 25 (Example 18 revisited). As seen in Example 18, the 2L×L2 matrix 
[
G(c)
A

]
with

A = [ IL |M−1 | · · · |M−(L−1) ] ∈ CL×L2
,

is rank deficient for all c ∈ CL. Notice that since det(M−k) = (−1)k(L−1) for k =
0, . . . , L − 1, the conditions of Theorem 24 are not satisfied. However, as soon as one of 
the submatrices of A is scaled by a non-unit constant, e.g., if
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A = [ 2IL |M−1 | · · · |M−(L−1) ] ∈ CL×L2
,

it follows from Theorem 24 that the matrix 
[
G(c)
A

]
has full rank for almost every c ∈ CL.

We define a partial order on the set of all L-tuples by

τ = (τ0, τ1, . . . , τL−1) � τ ′ = (τ ′0, τ ′1, . . . , τ ′L−1) ⇔ τj ≤ τ ′j , j = 0, . . . , L− 1.

Theorem 26. Let Λ̃ ⊂ ZL×ZL be of size R (> L). Assume that there exists a subset 
Λ ⊂ Λ̃ of size L with

(i) τj(Λ) = τj(Λ̃) whenever τj(Λ) �= 0;
(ii) ind(τ ′) �= ind(τ (Λ)) for every L-tuple τ ′ � τ (Λ̃) of size L different from τ (Λ).

Given any full spark matrix A of size (R−L)×R, the vectors c ∈ CL such that the R×R

matrix 
[
G(c)|Λ̃

A

]
is invertible constitute a dense open subset of CL with full Lebesgue 

measure.

To support this theorem, we give some examples.

Example 27. (a) Let L = 5 and Λ̃ = {(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (1, 0), (1, 1), (1, 2),
(1, 3)}. Then τ (Λ̃) = (5, 4, 0, 0, 0) and the matrix G(c)|Λ̃ is given by

⎡⎢⎢⎢⎢⎢⎣
c0 c0 c0 c0 c0 c1 c1 c1 c1
c1 ωc1 ω2c1 ω3c1 ω4c1 c2 ωc2 ω2c2 ω3c2
c2 ω2c2 ω4c2 ω6c2 ω8c2 c3 ω2c3 ω4c3 ω6c3
c3 ω3c3 ω6c3 ω9c3 ω12c3 c4 ω3c4 ω6c4 ω9c4
c4 ω4c4 ω8c4 ω12c4 ω16c4 c0 ω4c0 ω8c0 ω12c0

⎤⎥⎥⎥⎥⎥⎦ .

The L-tuple τ = (5, 0, 0, 0, 0) satisfies the conditions (i), (ii) of Theorem 26. Indeed, 
(i) is clear, and to verify (ii), let τ ′ = (τ ′0, τ ′1, τ ′2, τ ′3, τ ′4) � τ (Λ̃) with ‖τ ′‖1 = 5, be an 
L-tuple different from τ . The only possible τ ′ are (1, 4, 0, 0, 0), (2, 3, 0, 0, 0), (3, 2, 0, 0, 0), 
(4, 1, 0, 0, 0), whose respective indices are 4, 3, 2, 1, while ind(τ ) = 0. This verifies (ii). 
Theorem 26 then implies that with any full spark matrix A of size 4×9, the 9×9 matrix [
G(c)|Λ̃

A

]
is invertible for almost every choice of c in C5.

(b) Let L = 3 and Λ̃ = {(0, 0), (0, 1), (1, 0), (2, 0)}. Then τ (Λ̃) = (2, 1, 1) and

G(c)|Λ̃ =

⎡⎢⎣ c0 c0 c1 c2
c1 ωc1 c2 c0
c2 ω2c2 c0 c1

⎤⎥⎦ .
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It is easy to check that the L-tuples τ = (2, 1, 0) and τ = (2, 0, 1) satisfy the conditions 
(i), (ii) of Theorem 26 (also see Example 23). Consequently, with any vector a ∈ C4 with 

no zero entries, the 4×4 matrix 
[
G(c)|Λ̃

a∗

]
is invertible for almost every choice of c in C3.

4. Identification of MIMO channels under linear constraints

Let us now extend our SISO results to the multiple-input multiple-output (MIMO) 
setting. We shall first extend the results to the multiple-input single-output (MISO) 
setting and then to the MIMO setting.

Lemma 28. Let L ≥ 2, N ≥ 1, and Λ(1), . . . , Λ(N) ⊂ ZL×ZL with L + 1 ≤ R =∑N
n=1 |Λ(n)| < 2L. Then

span
{

ker
[
G(c(1))|Λ(1) · · · G(c(N))|Λ(N)

]
: (c(1), . . . , c(N)) ∈ SN

}
= CR,

where SN is the set of all (c(1), . . . , c(N)) ∈ (CL)N such that the matrix [G(c(1)) · · ·
G(c(N))] has full spark (cf. Theorem 7).

Theorem 29. Let L ≥ 2, N ≥ 1, Λ(1), . . . , Λ(N) ⊂ ZL×ZL with 
∑N

n=1 |Λ(n)| = L + 1, 
and a ∈ CL+1\{0}. There exists (c(1), . . . , c(N)) ∈ (CL)N such that the (L + 1)×(L + 1)
matrix 

[
G(c(1))|Λ(1) ··· G(c(N))|Λ(N)

a∗

]
is invertible. Moreover, such vectors (c(1), . . . , c(N))

constitute a dense open subset of (CL)N with full measure. Hence, the MISO operator 
Paley-Wiener space OPW (Λ) = [OPW (Λ(n)) ]Nn=1 with side constraints b = a∗η, where 
b ∈ C, η = [η(n)|Λ(n) ]Nn=1 and η(n) ∈ CL2 for n = 1, . . . , N , is identifiable.

As seen in Theorem 6, the MISO operator Paley-Wiener space OPW (Λ) =
[OPW (Λ(n)) ]Nn=1 is identifiable if and only if 

∑N
n=1 |Λ(n)| ≤ L. Theorem 29 shows 

that one can overcome such limitations on the total size of Λ(1), . . . , Λ(N) by taking 
linear side constraints into account.

Finally, we generalize the result to the MIMO setting.

Theorem 30. Let L ≥ 2, M, N ≥ 1, Λ = [Λm,n]Mm=1
N
n=1 with Λm,n ⊂ ZL×ZL and ∑M

m=1
∑N

n=1 |Λm,n| = L + 1, and a = (a1, . . . , aM )T ∈ CL+1\{0}, where am is a 
vector of dimension 

∑N
n=1 |Λm,n|. There exists (c(1), . . . , c(N)) ∈ (CL)N such that the 

(L + 1)×(L + 1) matrix

⎡⎢⎢⎢⎢⎢⎣
G(c(1), . . . , c(N))|Λ1

0 · · · 0
0 G(c(1), . . . , c(N))|Λ2

· · · 0
...

...
. . .

...
0 0 · · · G(c(1), . . . , c(N))|ΛM

a∗
1 a∗

2 · · · a∗
M

⎤⎥⎥⎥⎥⎥⎦ (13)
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where Λm = {Λm,n}Nn=1 ⊂ (ZL×ZL)N , is invertible. Moreover, such vectors (c(1), . . . ,

c(N)) constitute a dense open subset of (CL)N with full measure. Hence, the MIMO 
operator Paley-Wiener space OPW (Λ) = [OPW (Λm,n) ]Mm=1

N
n=1 with side constraints 

b =
∑M

m=1 a
∗
mηm|Λm

, where b ∈ C and ηm =
{
ηm,n

}N
n=1 ∈ (CL2)N for m = 1, . . . , M , 

is identifiable.

Concerning side constraints of multiple equations, Example 17 in the SISO setting 
clearly indicates that Theorems 29 and 30 cannot be extended to linear side constraints 
of two or more equations.

5. Applications to continuous-time channel identification and operator sampling

In this section, we discuss the channel identification problem in the continuous-time 
setting where the subchannels are represented by operators that act on a function space 
over R. As we shall see, results established in the finite-dimensional (discrete-time) set-
ting can be carried over to the continuous-time setting in a straightforward manner.

5.1. Continuous-time SISO channels

In the continuous-time setting, linear time-variant SISO communication channels are 
modeled by Hilbert-Schmidt operators of the form

Hf(x) =
¨

ηH(t, ν)MνTtf(x) dν dt

=
ˆ

σH(x, ξ) e2πixξ f̂(ξ) dξ, f ∈ L2(R), (14)

where Tt is translation (time shift) by t ∈ R, that is, Ttf(x) = f(x −t), Mν is modulation 
(frequency shift) by ν ∈ R, that is, Mνf(x) = e2πiνx f(x), and f̂(ξ) =

´
f(x) e−2πixξ dx is 

the Fourier transform of f . The spreading function ηH ∈ L2(R2) and the Kohn-Nirenberg 
symbol σH ∈ L2(R2) of H are related by

σH = FsηH (equivalently, ηH = FsσH),

where Fs denotes the symplectic Fourier transform defined as

(Fsg)(x, ξ) =
¨

g(t, ν) e−2πi(νx−ξt) dt dν.

Here the operator H being Hilbert-Schmidt corresponds to the fact that ηH ∈ L2(R2), 
or equivalently, that σH ∈ L2(R2). Certainly, an operator of the form (14) is a straight-
forward generalization of (3) to the continuous-time setting.

Similar to the (discrete) support restrictions made for the vector η = {η(k, �)}L−1
k,�=0

in Definition 2, we consider (continuous) support restrictions on the spreading function 
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ηH = FsσH ∈ L2(R2). The SISO operator Paley-Wiener space for a set S ⊂ R2 is defined 
by

OPW (S) =
{
H ∈ L(L2(R), L2(R)) : ηH ∈ L2(R2), suppFsσH = supp ηH ⊂ S

}
,

(15)

which consists of Hilbert-Schmidt operators on L2(R) whose Kohn-Nirenberg symbol is 
bandlimited to S ⊂ R2. In order to avoid pathological sets for S ⊂ R2, we shall assume 
that S is a Jordan domain, that is, a bounded set whose boundary is a Lebesgue zero 
set. It should be noted that every operator H in OPW (S) is defined a priori on L2(R), 
however, its domain can be extended to classes of tempered distributions [21].

We say that a class of operators H ⊂ L(L2(R), L2(R)) is identifiable if there exist a 
tempered distribution g and constants 0 < A ≤ B < ∞ such that

A‖H1 −H2‖H ≤ ‖H1g −H2g‖L2(R) ≤ B‖H1 −H2‖H, H1, H2 ∈ H.

If H is a linear space, this reduces to

A‖H‖H ≤ ‖Hg‖L2(R) ≤ B‖H‖H, H ∈ H. (16)

We refer to operator identification as operator sampling if g is a discretely supported 
distribution, in particular, as regular operator sampling if there exists an identifier of the 
form g =

∑
n∈Z cnδnT for some T > 0 and an L-periodic sequence c = {cn}n∈Z and 

where δnT stands for the delta distribution.
The next theorem shows that the identifiability of OPW (S) depends essentially on 

the size of S ⊂ R2.

Theorem 31 ([22,1]). Let S ⊂ R2 be a Jordan domain. The SISO operator Paley-Wiener 
space OPW (S) is identifiable by regular operator sampling if |S| < 1, and not identifiable 
if |S| > 1.

This result is a continuous-time analogue of Corollary 4. In fact, one can immediately 
deduce the first part of Theorem 31 from Corollary 4. The task involves a discretization, 
namely, the procedure of finding an appropriate rectification of S and then sampling 
with respect to the rectification. This reduces the continuous-time equation to a family 
of L×L2 linear systems of the form (4) each of which is indexed by (t, ν). We postpone the 
detailed arguments to Section 7.6. Let us mention that this technique, in general, allows 
us to carry over results in the finite-dimensional SISO setting to the continuous-time 
SISO setting in a straightforward way.
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5.2. Continuous-time MIMO channels

The corresponding formulations for the continuous-time MIMO setting are as fol-
lows. In the N -input M -output case, MIMO channel operators are of the form H :
(L2(R))N → (L2(R))M given by

H

⎛⎝ f1
...
fN

⎞⎠ =

⎛⎝ H1,1 . . . H1,N
...

...
HM,1 . . . HM,N

⎞⎠⎛⎝ f1
...
fN

⎞⎠ =

⎛⎜⎝
∑N

n=1 H1,nfn
...∑N

n=1 HM,nfn,

⎞⎟⎠ ,

where each subchannel Hm,n ∈ L(L2(R), L2(R)) is of the form (14). We shall represent 
such an operator by the block matrix

H =

⎛⎝ H1,1 . . . H1,N
...

...
HM,1 . . . HM,N

⎞⎠ ,

and define its spreading function and spreading support componentwise, that is,

η(H) =

⎛⎝ η(H1,1) · · · η(H1,N )
...

...
η(HM,1) · · · η(HM,N )

⎞⎠ ,

and

supp η(H) =

⎛⎜⎝ supp η(H1,1) ··· supp η(H1,N )
...

...
supp η(HM,1) ··· supp η(HM,N )

⎞⎟⎠ ⊂ (R2)M×N .

The MIMO operator Paley-Wiener space for a set S = {Sm,n}Mm=1
N
n=1 ⊂ (R2)M×N is 

defined by

OPW (S) = {H ∈ L((L2(R))N , (L2(R))M ) : η(H) ∈ L2(R2)M×N , supp η(H) ⊂ S
}
.

As in the SISO case, we say that a class of operators H ⊂ L((L2(R))N , (L2(R))M )
is identifiable if there exist a vector g = (g1, . . . , gN ) of tempered distributions and 
constants 0 < A ≤ B < ∞ such that

A‖H1 −H2‖H ≤ ‖H1g −H2g‖L2(R) ≤ B‖H1 −H2‖H, H1,H2 ∈ H.

If H is a linear space, this reduces to

A‖H‖H ≤ ‖Hg‖L2(R) ≤ B‖H‖H, H ∈ H.
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Fig. 1. An example of continuous-time channels with partial linear relation. (For interpretation of the colors 
in the figure, the reader is referred to the web version of this article.)

In the continuous-time SISO setting, we have already seen that Theorem 31 is a 
continuous-time analogue of Corollary 4. Similarly, in the continuous-time MIMO setting 
we have the following as a counterpart of Theorem 6.

Theorem 32 ([7]). Let S = {Sm,n}Mm=1
N
n=1 ⊂ (R2)M×N where each S ⊂ R2 is a Jor-

dan domain. If 
∑N

n=1 μ(Sm,n) < 1 for m = 1, . . . , M , then OPW (S) is identifiable. If ∑N
n=1 μ(Sm,n) > 1 for some m, then OPW (S) is not identifiable.

Using the discretization technique described in Section 5.1, one can also carry over 
results in the finite-dimensional MIMO setting to the continuous-time MIMO setting. 
We refer to [17] for detailed arguments. Instead of giving details here, we present a 
simple example which illustrates the benefit of having linear side constraints in the 
continuous-time channel identification problem.

Example 33. Consider a three-input single-output channel H = (H1,1, H1,2, H1,3) whose 
subchannels H1,1 ∈ OPW (S1,1), H1,2 ∈ OPW (S1,2), H1,3 ∈ OPW (S1,3) have the 
property of sharing the same spreading function on their common support sets, that 
is, η(H1,j) = η(H1,k) on the set S1,j ∩ S1,k. For notational simplicity, we shall write 
H1 := H1,1, S1 := S1,1, and so on. It turns out that H = (H1, H2, H3) is identi-
fiable if μ(S1 ∪ S2 ∪ S3) < 1 and not identifiable if μ(S1 ∪ S2 ∪ S3) > 1. Clearly, 
μ(S1 ∪ S2 ∪ S3) ≤ μ(S1) + μ(S2) + μ(S3) where the inequality is strict if any two of 
the sets S1, S2, S3 have an intersection of positive measure.

Let us give an intuitive explanation and also draw a connection with the finite-
dimensional setting. To this end, we partition the support sets S1, S2, S3 as

S1 = V123 ∪· V12 ∪· V13∪· V1,

S2 = V123 ∪· V12 ∪· V23∪· V2,

S3 = V123 ∪· V13 ∪· V23∪· V3,
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as shown in Fig. 1, and decompose the operators H1, H2, H2 as

H1 = F123 + F12 + F13 + F1,

H2 = F123 + F12 + F23 + F2,

H3 = F123 + F13 + F23 + F3,

where F123 ∈ OPW (V123), F12 ∈ OPW (V12), F13 ∈ OPW (V13), F23 ∈ OPW (V23), 
F1 ∈ OPW (V1), F2 ∈ OPW (V2), F3 ∈ OPW (V3). The response of H = (H1, H2, H3)
to the input g = (g(1), g(2), g(3)) is then given by

H1 g
(1) + H2 g

(2) + H3 g
(3)

= F123(g(1) + g(2) + g(3)) + F12(g(1) + g(2)) + F13(g(1) + g(3))

+ F23(g(2) + g(3)) + F1g
(1) + F2g

(2) + F3g
(3).

This reformulates the problem of identifying H with the input g to identifying the 
synthetic 7-input one-output channel F = (F123, F12, F13, F23, F1, F2, F3) with the input 
g̃ = (g(1) + g(2) + g(3), g(1) + g(2), g(1) + g(3), g(2) + g(3), g(1), g(2), g(3)). In the latter 
setup, all subchannels of F have disjoint spreading support, but instead the input g̃
has a limitation on its choice. It turns out that such a limitation hardly affects the 
identifiability of F and one can deduce that, similarly as in Theorem 32, F is identifiable 
if μ(V123) + μ(V12) + μ(V13) + μ(V23) + μ(V1) + μ(V2) + μ(V3) < 1 and not identifiable if 
μ(V123) +μ(V12) +μ(V13) +μ(V23) +μ(V1) +μ(V2) +μ(V3) > 1, that is, H = (H1, H2, H3)
is identifiable if μ(S1 ∪ S2 ∪ S3) < 1 and not identifiable if μ(S1 ∪ S2 ∪ S3) > 1.

Translating the problem again to the finite-dimensional setting (based on the recti-
fication technique detailed in Section 7.6), the identifiability of F is equivalent to the 
solvability of the linear system

y =
[
G(c(1) + c(2) + c(3)) G(c(1) + c(2)) G(c(1) + c(3)) G(c(2) + c(3))

. . . G(c(1)) G(c(2)) G(c(3))
]
⎡⎢⎢⎢⎢⎢⎢⎣

η123
η12
η13
η23
η1
η2
η3

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where η123, η12, . . . , η3 ∈ CL2 are the L2-dimensional unknown vectors and c(1) =
{c(1)k }L−1

k=0 , c(2) = {c(2)k }L−1
k=0 , c(3) = {c(3)k }L−1

k=0 are the L-periodic coefficients of the 

delta trains g(1), g(2), g(3), respectively, that is, for some T > 0, g(n) =
∑

k∈Z c
(n)
k δkT , 

n = 1, 2, 3. If the matrix associated with the linear system were to have full spark, then 
the system is uniquely solvable if and only if the vector (η123, η12, η13, η23, η1, η2, η3)T has 
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a known support of size at most L. However, the matrix does not have full spark, in-
deed, the first column of G(c(1) + c(2) + c(3)) is a linear combination of the first columns 
of G(c(1)), G(c(2)), G(c(3)). Nevertheless, due to the construction of V123, V12, . . . , V3, 
the vectors η123, η12, . . . , η3 ∈ CL2 are disjointly supported and therefore the full spark 
property is not necessary. In fact, to establish the desired identifiability result one only 
needs that columns of[

G(c(1) + c(2) + c(3))|Λ123 G(c(1) + c(2))|Λ12 G(c(1) + c(3))|Λ13

. . . G(c(2) + c(3))|Λ23 G(c(1))|Λ1 G(c(2))|Λ2 G(c(3))|Λ3

]
with Λ123, Λ12, Λ13, Λ23, Λ1, Λ2, Λ3 ⊂ ZL×ZL being disjoint sets of total size L, are 
linearly independent. Theorem 8 implies that there exist vectors c(1), c(2), c(3)

∈ CL with this property.

Remark 34. (i) Explicit reconstruction formulas for the continuous-time SISO channel 
identification are derived in [18] and generalizations to the MIMO setting are addressed 
in [17].

(ii) Concerning the regular operator sampling of OPW (S), Pfander and Walnut [18]
obtained a slightly more general result than Theorem 31 which also covers the critical 
area case |S| = 1. Their result characterizes all spaces OPW (S) that are identifiable by 
regular operator sampling, in terms of a dual tiling condition on the set S.

(iii) It is possible to extend the space OPW (S) by removing the condition σH ∈
L2(R2) from (15). If {0}×[−Ω/2, Ω/2] ⊂ S for some Ω > 0, then the extended space 
contains the multiplication operators defined by Hf(x) = m(x) f(x), where m(x) is an 
arbitrary function in the classical Paley-Wiener space

PW (Ω) = {f ∈ L2(R) : supp f̂ ⊂ [−Ω/2,Ω/2]}.

Such operators can be represented in the form (14) with ηH(t, ν) = δ(t) m̂(ν) and 
σH(x, ξ) = m(x), neither of which is in L2(R2). Using reconstruction formulas devel-
oped for operator sampling of the extended OPW (S), one can immediately deduce the 
classical sampling reconstruction formula for PW (Ω). For further details, we refer the 
reader to [18].

6. Conclusion

This paper studies the channel identification problem for multiple-input multiple-
output (MIMO) channels under the assumption that subchannels have some known 
linear relationship. We formulate the linear relations in terms of linear constraints which 
can express relations between and within subchannels.

In the single-input single-output (SISO) setting, we show that preknowledge on linear 
side constraints consisting of a single equation allows the identification of OPW (Λ) with 
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|Λ| = L +1. By taking into account the constraints, this result overcomes the fundamental 
limitation that OPW (Λ) is identifiable if and only if |Λ| ≤ L. Although this result might 
not be surprising, the proof requires a careful analysis on Gabor submatrices which 
makes the task surprisingly challenging. The result however does not extend to the 
case of linear side constraints consisting of multiple equations, in particular, we give an 
example of linear constraints consisting of two equations such that the space OPW (Λ)
under the constraints is not identifiable for every Λ with |Λ| = L + 2. Nevertheless, we 
provide some sufficient conditions for linear constraints of k equations so that OPW (Λ)
with |Λ| = L + k is identifiable. We then extend the SISO results to the MIMO setting. 
We also discuss the applicability of our results in the continuous-time setting.

7. Proofs

7.1. Proof of Assertions in Example 13

(i) Consider a two-input single-output channel H = (H1,1, H1,2) with (0, 0) ∈ Λ1,1 ∩
Λ1,2 and η1,1(0, 0) = η1,2(0, 0). Such constraints can be represented by the equation 

b1 = A1η1, where A1 = [ 1, 0, . . . , 0 | −1, 0, . . . , 0 ] ∈ C1×2L2 , η1 =
[
η1,1
η1,2

]
, and b1 = 0. 

By Gaussian elimination, we have

B :=
[
G(c(1))|Λ1,1

G(c(2))|Λ1,2
1, 0, . . . , 0 −1, 0, . . . , 0

]
=
[
c(1) G(c(1))|Λ1,1\(0,0) c(2) G(c(2))|Λ1,2\(0,0)
1 0, . . . , 0 −1 0, . . . , 0

]
∼
[
0 G(c(1))|Λ1,1\(0,0) c(1) + c(2) G(c(2))|Λ1,2\(0,0)
1 0, . . . , 0 −1 0, . . . , 0

]
,

which implies that B is injective if and only if the matrix[
G(c(1))|Λ1,1\(0,0) | (c(1) + c(2)) | G(c(2))|Λ1,2\(0,0)

]
is injective. Note that this matrix is of the form (8) in Theorem 8 with α = (1, 1)T and 
Λ = {(0, 0)}. With (c(1), c(2)) ∈ (CL)2 chosen from the corresponding set S2,α (defined 
in Theorem 8), the matrix is injective if and only if |Λ1,1\(0, 0)| +|Λ1,2\(0, 0)| +1 ≤ L, i.e., 
|Λ1,1| + |Λ1,2| ≤ L + 1. Since the (L + 1)×(|Λ1,1| + |Λ1,2|) matrix B cannot be injective 
for |Λ1,1| + |Λ1,2| > L + 1, we conclude that OPW (Λ) with such side constraints is 
identifiable if and only if |Λ1,1| + |Λ1,2| ≤ L + 1.

(ii) Consider a single-input two-output channel H = (H1,1, H2,1) ∈ OPW (Λ) whose 
subchannels H1,1 and H2,1 are known to be partially identical, i.e., η1,1|S = η2,1|S
for some S ⊂ Λ1,1 ∩ Λ2,1. Such constraints can be represented by the equation b1 =
A1η1,1 + A2η2,1, where A1 = [0 IS 0] ∈ CS×L2 , A2 = [0 − IS 0] ∈ CS×L2 and b1 = 0. 
Applying the Gaussian elimination, we have
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B :=

⎡⎢⎣G(c(1))|Λ1,1
0

0 G(c(1))|Λ2,1
A1|Λ1,1

A2|Λ2,1

⎤⎥⎦
=

⎡⎣G(c(1))|S G(c(1))|Λ1,1\S 0 0
0 0 G(c(1))|S G(c(1))|Λ2,1\S
IS 0 −IS 0

⎤⎦
∼

⎡⎣ 0 G(c(1))|Λ1,1\S 0 −G(c(1))|Λ2,1\S
0 0 G(c(1))|S G(c(1))|Λ2,1\S
IS 0 −IS 0

⎤⎦
or⎡⎣ 0 G(c(1))|Λ1,1\S 0 −G(c(1))|Λ2,1\S

G(c(1))|S G(c(1))|Λ1,1\S 0 0
IS 0 −IS 0

⎤⎦ .

This shows that B is injective if and only if the 2L×(|S| + |Λ1,1\S| + |Λ2,1\S|) submatrix[
G(c(1))|Λ1,1\S 0 −G(c(1))|Λ2,1\S

0 G(c(1))|S G(c(1))|Λ2,1\S

]

is injective if and only if the 2L×(|S| + |Λ1,1\S| + |Λ2,1\S|) submatrix[
0 G(c(1))|Λ1,1\S −G(c(1))|Λ2,1\S

G(c(1))|S G(c(1))|Λ1,1\S 0

]

is injective. With c(1) ∈ CL chosen so that G(c(1)) has full spark (cf. Theorem 3), 
the first submatrix is injective if either max{|Λ1,1\S|, |Λ2,1|} ≤ L or max{|Λ1,1\S| +
|Λ2,1\S|, |S|} ≤ L; the second submatrix is injective if either max{|Λ1,1\S| +
|Λ2,1\S|, |S|} ≤ L or max{|Λ1,1|, |Λ2,1\S|} ≤ L. (Note that these conditions are suf-
ficient but not necessary for the respective injectivity.) Consequently, B is injective if 
one of the following holds:

(i) max{|Λ1,1\S|, |Λ2,1|} ≤ L,
(ii) max{|Λ1,1|, |Λ2,1\S|} ≤ L,
(iii) max{|Λ1,1\S| + |Λ2,1\S|, |S|} ≤ L.

Note that in any case, we have |Λ1,1\S| + |Λ2,1\S| + |S| ≤ 2L, as indicated by the size 
of B ∈ C(2L+|S|)×(|Λ1,1|+|Λ2,1|). Therefore, we conclude that OPW (Λ) under such side 
constraints is identifiable if one of the conditions (i)-(iii) is satisfied.

7.2. Proof of Theorem 7 and Theorem 8

For the proofs, we need the following lemma.
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Lemma 35. Let Λ(1), . . . , Λ(N) ⊂ ZL×ZL with 
∑N

n=1 |Λ(n)| < 2L, where L, N ≥ 2. There 
exist (kn, �n) ∈ ZL×ZL, n = 1, . . . , N , such that the sets Λ(n) + (kn, �n), n = 1, . . . , N
are mutually disjoint.

The bound 2L in Lemma 35 is sharp because e.g., any translation of two sets Λ(1) =
{0}×ZL and Λ(2) = ZL×{0} always intersect.

Proof of Lemma 35. The proof is by induction.
(i) First, we show that the claim holds for N = 2. Let Λ, Λ′ ⊂ ZL×ZL be such that 

|Λ| + |Λ′| < 2L. The set

{(k, �) ∈ ZL×ZL : Λ ∩ (Λ′ + (k, �)) �= ∅}

=
⋃

(p,q)∈Λ′

{(k, �) ∈ ZL×ZL : (p, q) + (k, �) ∈ Λ}

=
⋃

(p,q)∈Λ′

(Λ − (p, q))

has cardinality at most |Λ| · |Λ′| ≤ (|Λ| + |Λ′|)2/4 < L2 and is therefore a proper subset 
of ZL×ZL. For any element (k, �) lying outside this set, we have Λ ∩ (Λ′ + (k, �)) = ∅.

(ii) Let Λ(1), . . . , Λ(N) ⊂ ZL×ZL with 
∑N

n=1 |Λ(n)| < 2L, where L, N ≥ 2. For 2 ≤
K ≤ N − 1 fixed, suppose that Λ(n) + (kn, �n), n = 1, . . . , K are mutually disjoint for 
some {(kn, �n)}Kn=1 ⊂ ZL×ZL. Applying (i) to the sets Λ = ∪· K

n=1(Λ(n) + (kn, �n)) and 
Λ′ = Λ(K+1), we find (kK+1, �K+1) ∈ ZL×ZL such that Λ ∩ (Λ′ + (kK+1, �K+1)) = ∅. 
Then Λ(n) + (kn, �n), n = 1, . . . , K + 1 are mutually disjoint.

From (i) and (ii), we conclude that there exists {(kn, �n)}Nn=1 ⊂ ZL×ZL such that 
the sets Λ(n) + (kn, �n) are mutually disjoint. �
Proof of Theorem 7. We will only prove the case N = 2, as the generalization to N ≥ 3 is 
straightforward. For brevity of notation, we write the matrix as [G(c) | G(d)] ∈ CL×2L2 , 
where c = (c0, · · · , cL−1)T, d = (d0, · · · , dL−1)T ∈ CL, and fix any Λ, Λ′ ⊂ ZL×ZL with 
|Λ| + |Λ′| = L. By Lemma 35, there exists (a, b) ∈ ZL×ZL for which the sets Λ and 
Λ′ + (a, b) are disjoint.

Using the commutation relation T pM q = ωpqM qT p, we have

M �T kd = ω(k+a)bM �+bT k+a(M−bT−ad), k, � = 0, . . . , L− 1.

Applying this to every (k, �) in Λ′ and collecting the phase factors, we find m ∈
{0, . . . , L − 1} such that

det[G(c)|Λ G(d)|Λ′ ] = ωm det[G(c)|Λ G(M−bT−ad)|Λ′+(a,b)].

Set f = (f0, f1, . . . , fL−1) = M−bT−ad. Since Λ ∩ (Λ′ + (a, b)) = ∅, Theorem 3 implies 
that det[G(c)|Λ G(c)|Λ′+(a,b)] is a nontrivial homogeneous polynomial of degree L in the 
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variables (c0, . . . , cL−1). Replacing the c in the second submatrix with f , we note that 
det[G(c)|Λ G(f)|Λ′+(a,b)] is a nontrivial homogeneous polynomial of degree L in the 

variables (c0, . . . , cL−1, f0, . . . , fL−1). Further, since the mapping d �→ f = M−bT−ad

is a unitary linear transform from CL onto CL, it follows that

det[G(c)|Λ G(d)|Λ′ ] = ωm det[G(c)|Λ G(f)|Λ′+(a,b)]

is a nontrivial homogeneous polynomial of degree L in the variables (c0, . . . , cL−1, d0,

. . . , dL−1). Therefore, the zeros of this polynomial constitute a zero-measure subset of 
C2L that is closed and has empty interior. The proof is complete by observing that there 
exist only finitely many choices of Λ, Λ′ ⊂ ZL×ZL with |Λ| + |Λ′| = L, and that all the 
mentioned properties are invariant under finite unions. �
Proof of Theorem 8. We will only prove the case N = 2, as the generalization to N ≥ 3
is straightforward. We may assume without loss of generality that α1 �= 0. Fix any 
Λ, Λ(1), Λ(2) ⊂ ZL×ZL with Λ ∩ (Λ(1) ∪ Λ(2)) = ∅ and |Λ| + |Λ(1)| + |Λ(2)| = L, and 
enumerate the elements of Λ ⊂ ZL×ZL by Λ = {λ1, . . . , λr} where r = |Λ|. For brevity, 
let us write π(λ) = M �T k for λ = (k, �) ∈ ZL×ZL. Using that the determinant of a 
square matrix is linear in each of the columns, we have

det[G(α1c
(1) + α2c

(2))|Λ G(c(1))|Λ(1) G(c(2))|Λ(2) ]

=
2∑

n1,...,nr=1
αn1 . . . αnr

· det[π(λ1)c(n1) . . . π(λr)c(nr) G(c(1))|Λ(1) G(c(2))|Λ(2) ]

= (α1)r det[G(c(1))|Λ G(c(1))|Λ(1) G(c(2))|Λ(2) ] (17)

+
∑

(n1,...,nr) �=(1,...,1)

αn1 . . . αnr

· det[π(λ1)c(n1) . . . π(λr)c(nr) G(c(1))|Λ(1) G(c(2))|Λ(2) ].

Then, as in the proof of Theorem 7,

det[G(c(1))|Λ G(c(1))|Λ(1) G(c(2))|Λ(2) ] = det[G(c(1))|Λ∪Λ(1) G(c(2))|Λ(2) ]

is a nontrivial homogeneous polynomial of degree L in the variables (c(1)0 , . . . , c(1)L−1, c
(2)
0 ,

. . . , c
(2)
L−1), more precisely, a nontrivial linear combination of monomials each of which is 

formed with r+|Λ(1)| elements from c(1)0 , . . . , c(1)L−1 and |Λ(2)| elements from c(2)0 , . . . , c(2)L−1. 
As such monomials do not appear in the remaining terms of (17), no cancellation can 
occur between the first and the remaining terms of (17). Hence, we conclude that (17) is 
a nontrivial polynomial. The rest of the proof is similar to the proof of Theorem 7. �
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7.3. Proof of Theorem 15 and Lemma 16

Proof of Theorem 15. Suppose to the contrary that for some subset Λ ⊂ ZL×ZL of size 
L + 1 and a ∈ CΛ\{0} there exists no vector c ∈ CL such that the (L + 1)×(L + 1)
matrix 

[
G(c)|Λ

a∗

]
is invertible. This in particular means that for every c ∈ S the matrix [

G(c)|Λ
a∗

]
is rank deficient, and since G(c)|Λ ∈ CL×(L+1) has the full rank L we deduce 

that a∗ belongs in the row space of G(c)|Λ, that is,

a ∈
⋂
c∈S

ran (G(c)|Λ)∗.

However, by the fundamental theorem of linear algebra and Lemma 16 we have⋂
c∈S

ran (G(c)|Λ)∗ =
⋂
c∈S

(kerG(c)|Λ)⊥ = {0},

which is a contradiction. This shows that there exists a vector c ∈ CL such that the 
(L +1)×(L +1) matrix 

[
G(c)|Λ

a∗

]
is invertible, which in turn implies that the determinant 

of 
[
G(c)|Λ

a∗

]
is a nontrivial polynomial in the variables c0, . . . , cL−1. Hence, the set of all 

vectors c ∈ CL such that 
[
G(c)|Λ

a∗

]
is invertible is a dense open subset of CL with full 

Lebesgue measure. �
Proof of Lemma 16. Let us enumerate the elements of Λ by Λ = {(k1, �1), . . . , (kR, �R)} ⊂
ZL×ZL and fix any d ∈ S, so that G(d) has full spark. Then G(d)|Λ ∈ CL×R has the 
full rank L and therefore V = kerG(d)|Λ ⊂ CR is an R − L ≥ 1 dimensional subspace 
of CR. The full spark property of G(d), and therefore of G(d)|Λ, implies that every 
nontrivial vector in V must have at least L + 1 nonzero entries, that is, ‖x‖0 ≥ L + 1
for x ∈ V \{0}. Let {v1, . . . , vR−L} ⊂ CR be a basis of V . Applying the Gaussian elimi-
nation to v1, . . . , vR−L, in general, gives a nontrivial vector in V with at least R−L − 1
zero entries. If v1, . . . , vR−L would share a zero entry, then we would get a nontrivial 
vector in V with at least R − L zero entries, that is, with at most R − (R − L) = L

nonzero entries, leading to a contradiction. Therefore, the vectors v1, . . . , vR−L have no 
zero entry in common and consequently, we are able to construct a vector x ∈ V that 
has no zero entry, that is, ‖x‖0 = R.

For 0 ≤ p, q ≤ L − 1 fixed, the commutation relation T kM � = ωk�M �T k with 
ω = e2πi/L gives

M �T k(M qT pd) = ωkq−�pM qT p(M �T kd), k, � = 0, . . . , L− 1,

and since G(d) has full spark, it follows that G(M qT pd) has full spark as well, that is, 
M qT pd ∈ S. Collecting the equation for (k, �) ∈ Λ we obtain
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G(M qT pd)|Λ = M qT p G(d)|Λ D(p,q),

where D(p,q) = diag(ωk1q−�1p, . . . , ωkRq−�Rp). As x ∈ kerG(d)|Λ, this implies that for 
p, q = 0, . . . , L − 1,

D(p,q)x ∈ kerG(M qT pd)|Λ with M qT pd ∈ S.

To prove that span
{
kerG(c)|Λ : c ∈ S

}
= CR, it suffices to show that span{D(p,q)x :

p, q = 0, . . . , L − 1} = CR. Since all entries of x are nonzero, this is equivalent to

span{y(p,q) : p, q = 0, . . . , L− 1} = CR,

where y(p,q) = (ωk1q−�1p, . . . , ωkRq−�Rp)T for p, q = 0, . . . , L − 1. Note that the vectors

v(k,�) = [ωkq−�p]L−1
p,q=0 ∈ CL2

, k, � = 0, . . . , L− 1,

form an orthogonal basis for CL2 , in particular, the subset of R vectors {v(kj ,�j)}Rj=1
is linearly independent and therefore the matrix E = [v(k1,�1) | v(k2,�2) | . . . | v(kR,�R)] ∈
CL2×R has the full rank R. As the vectors y(p,q), p, q = 0, . . . , L − 1, are precisely the 
rows of E, we conclude that these vectors span CR. �
7.4. Proof of Theorems 24 and 26

For the proof, we need the following lemma which can be found in e.g., [19].

Lemma 36 (Extended Laplace Expansion). Let B = [Bi,j ]Ni,j=1 be an N×N matrix and let 
s = (s1, s2, . . . , sm) be a partition of the row indices of B, that is, 

⋃m
j=1 sj = {0, . . . , N −

1} and sj ∩ sk = ∅ for j �= k. Then

det(B) =
∑
t

sgn(s, t) · detB(s1, t1) · . . . · detB(sm, tm), (18)

where t = (t1, t2, . . . , tm) runs through all partitions of the column indices {0, . . . , N −1}
with |tj | = |sj | for j = 1, . . . , m. Here sgn(s, t) = ±1 denotes the sign of the permutation ( s1 s2 ··· sm
t1 t2 ··· tm

)
, and B(sj , tj) denotes the submatrix of B formed with the rows indexed by 

sj and the columns indexed by tj, where elements in sj and tj are arranged in increasing 
order.

Remark 37. Given a partition s = (s1, s2, . . . , sm) of {0, . . . , N − 1}, there exist in to-
tal N !

|s1|! ... |sm|! distinct choices of t = (t1, t2, . . . , tm). In fact, each term of the sum in 
(18) contributes exactly |s1|! . . . |sm|! terms to the sum in the well-known determinant 
formula
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det(B) =
∑

σ∈SN

sgn(σ)B0,σ0 B1,σ1 . . . BN−1,σN−1 ,

thereby accounting for all N ! = N !
|s1|! ... |sm|!×(|s1|! . . . |sm|!) terms in this sum.

Proof of Theorem 24. Assume that detAk �= (−1)L−1 detAk+1 for some k and let c ∈
CL be arbitrary. It suffices to show that the determinant of the matrix (cf. (5))

B =
[
DkWL Dk+1WL

Ak Ak+1

]
is a nontrivial polynomial in the variables c0, . . . , cL−1. To see this, we apply Lemma 36
to B with the partition s = ({0, . . . , L − 1}, {L, . . . , 2L − 1}) of Z2L and obtain that

det(B) =
∑
t0

sgn(s, t) · detB({0, . . . , L− 1}, t0) (19)

· detB({L, . . . , 2L− 1},Z2L\t0),

where t0 runs through all subsets of Z2L with size L. Here sgn(s, t) is the sign of the 

permutation 
(

{0,...,L−1} {L,...,2L−1}
t0 Z2L\t0

)
. The term corresponding to t0 = {0, . . . , L − 1} is

det(DkWL) detAk+1 = c0 . . . cL−1 det(WL) detAk+1

and the one corresponding to t0 = {L, . . . , 2L − 1} is

(−1)L det(Dk+1WL) · detAk = (−1)Lc0 . . . cL−1 det(WL) detAk.

It follows easily from Proposition 20 that these two terms are the only ones that 
produce the monomial c0 . . . cL−1, in fact, all monomials appearing in other terms have 
indices different from L(L − 1)/2 modulo L. Hence, the monomial c0 . . . cL−1 appears in 
det(B) with the coefficient det(WL) · (detAk+1 + (−1)L detAk) �= 0, which shows that 
det(B) is not identically zero.

Next, assume L is prime and detAk �= detA� for some 0 ≤ k < � ≤ L − 1. Following 
the same arguments with

B =
[
DkWL D�WL

Ak A�

]
,

we find two terms in the sum (19): c0 . . . cL−1 det(WL) detA� corresponding to t0 =
{0, . . . , L −1}, and (−1)Lc0 . . . cL−1 det(WL) detAk corresponding to t0 = {L, . . . , 2L −
1}. Note that since L is prime, we have p(� − k) = 0 mod L if and only if p = 0
mod L. Using this fact, we similarly conclude that the monomial c0 . . . cL−1 appears in 
det(B) with the coefficient det(WL) · (detA� +(−1)L detAk) �= 0, hence, det(B) is not 
identically zero. �
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Proof of Theorem 26. Applying Lemma 36 to the matrix 
[
G(c)|Λ̃

A

]
with the partition 

s = ({0, 1, . . . , L − 1}, {L, L + 1, . . . , R− 1}) of ZR, we have

det
([

G(c)|Λ̃
A

])
=
∑
t

sgn(s, t) · detG(c)|Λ̃(ZL, t0) · detA(ZR−L,ZR\t0), (20)

where t0 runs through all subsets of ZR with size L. Here sgn(s, t) is the sign of the 

permutation 
(

{0,...,L−1} {L,...,R−1}
t0 ZR\t0

)
. Notice that to each t0 corresponds a unique subset 

Λ′ ⊂ Λ̃ of size L satisfying G(c)|Λ̃(ZL, t0) = G(c)|Λ′ . Let us denote by t0 the one with 
G(c)|Λ̃(ZL, t0) = G(c)|Λ, and rewrite the righthand side of (20) as

sgn(s, t) · detG(c)|Λ̃(ZL, t0) · detA(ZR−L,ZR\t0) (21)

+
∑
t0 �=t0

sgn(s, t) · detG(c)|Λ̃(ZL, t0) · detA(ZR−L,ZR\t0).

The condition (i) implies that Λ is the only subset of Λ̃ with size L that is associated 
with the L-tuple τ (Λ), i.e., τ (Λ′) �= τ (Λ) for any other subset Λ′ ⊂ Λ̃ of size L. Together 
with condition (ii), we have ind(τ (Λ′)) �= ind(τ (Λ)) for every such Λ′ �= Λ. By Propo-
sition 20, all monomials appearing in det(G(c)|Λ′) have indices equal to ind(τ (Λ′)) and 
are therefore distinct from the ones appearing in det(G(c)|Λ), which all have indices 
equal to ind(τ (Λ)). Equivalently, in terms of t0, this means that monomials appearing 
in G(c)|Λ̃(ZL, t0) with t0 �= t0 are distinct from the ones appearing in G(c)|Λ̃(ZL, t0). 
Finally, the full spark of A implies detA(ZR−L, ZR\t0) �= 0 and therefore the first term 
of (21) is a nontrivial homogeneous polynomial of degree L in the variables c0, . . . , cL−1

(see Theorem 3). Hence det
[
G(c)|Λ̃

A

]
is a nontrivial polynomial and the desired set can 

be obtained by excluding the zero set of this polynomial from CL. �
7.5. Proof of Lemma 28 and Theorems 29 and 30

Proof of Lemma 28. The case N = 1 is proved in Lemma 16 (it is even proved for 
|Λ(1)| ≤ L2). We will only prove the case N = 2, as the generalization to N ≥ 3 is 
straightforward.

For brevity of notation, we write Λ(1), Λ(2) as Λ, Λ′. By Lemma 35, there exists (a, b) ∈
ZL×ZL such that Λ ∩ (Λ′ + (a, b)) = ∅. Let us enumerate the elements of Λ by Λ =
{(k1, �1), . . . , (kr, �r)} and Ω := Λ′ + (a, b) = {(kr+1, �r+1), . . . , (kR, �R)}, where r = |Λ|
and R = |Λ| + |Ω| (< 2L), and choose (d, d′) ∈ S2 so that [G(d) G(d′)] has full spark.

For 0 ≤ p, q ≤ L − 1 fixed, the commutation relation T kM � = ωk�M �T k gives

M �T k(M qT pd) = ωkqM �+qT k+pd, k, � = 0, . . . , L− 1,
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which shows that the columns of G(M qT pd) and G(d) are exactly the same up to 
ordering and phase factors. Therefore, (d, d′) ∈ S2 implies (M qT pd, M q′T p′

d′) ∈ S2
for every p, q, p′, q′ = 0, . . . , L − 1. Using the commutation relation once more, we get

M �T k(M qT pd) = ωkq−�pM qT p(M �T kd), k, � = 0, . . . , L− 1,

which leads to

G(M qT pd)|Λ = M qT p G(d)|Λ D(p,q),

where D(p,q) = diag(ωk1q−�1p, . . . , ωkrq−�rp) ∈ Cr×r. Similarly, we have that

G(M bT aM qT pd′)|Λ′ = G(M qT pd′)|Ω F = M qT p G(d′)|Ω D′ (p,q) F ,

where F = diag(ωkr+1b, . . . , ωkRb) ∈ C(R−r)×(R−r) and D′ (p,q) = diag(ωkr+1q−�r+1p, . . . ,

ωkRq−�Rp) ∈ C(R−r)×(R−r). Combining these together, we obtain

[
G(M qT pd)|Λ G(M bT aM qT pd′)|Λ′

]
= M qT p

[
G(d)|Λ G(d′)|Ω

]
E(p,q)

[
Ir 0
0 F

]
,

where E(p,q) = diag(ωk1q−�1p, . . . , ωkRq−�Rp) ∈ CR×R.
As in the proof of Lemma 16, we can find a vector x in ker [G(d)|Λ G(d′)|Ω] (⊂ CΛ∪Ω)

with no zero entries. Setting

z :=
[
Ir 0
0 F

]
x,

we note that E(p,q)z ∈ ker [G(M qT pd)|Λ G(M bT aM qT pd′)|Λ′ ] and (M qT pd,
M bT aM qT pd′) ∈ S2 for p, q = 0, . . . , L −1. It now suffices to show that span{E(p,q)z :

p, q = 0, . . . , L − 1} = CΛ∪Ω, where z ∈ CR has no zero entries; but this was already 
seen in the proof of Lemma 16. �
Proof of Theorem 29. We will use similar arguments as in the proof of Theorem 15.

Suppose to the contrary that for some Λ(1), . . . , Λ(N) ⊂ ZL×ZL with 
∑N

n=1 |Λ(n)| =
L + 1 and a ∈ CL+1\{0}, there exists no vector (c(1), . . . , c(N)) ∈ (CL)N such that 
the (L + 1)×(L + 1) matrix 

[
G(c(1))|Λ(1) ··· G(c(N))|Λ(N)

a∗

]
is invertible. This in particular 

means that for every (c(1), . . . , c(N)) ∈ SN the matrix 
[
G(c(1))|Λ(1) ··· G(c(N))|Λ(N)

a∗

]
is rank 

deficient, and since 
[
G(c(1))|Λ(1) · · · G(c(N))|Λ(N)

]
has the full rank L we deduce that 

a∗ belongs in the row space of 
[
G(c(1))|Λ(1) · · ·G(c(N))|Λ(N)

]
, that is,

a ∈
⋂

c∈SN

ran
[
G(c(1))|Λ(1) ··· G(c(N))|Λ(N)

a∗

]∗
.
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However, by the fundamental theorem of linear algebra and Lemma 28 we have

⋂
c∈SN

ran
[
G(c(1))|Λ(1) ··· G(c(N))|Λ(N)

a∗

]∗
=

⋂
c∈SN

(
ker

[
G(c(1))|Λ(1) ··· G(c(N))|Λ(N)

a∗

])⊥
= {0},

which is a contradiction. This shows that there exists a vector (c(1), . . . , c(N)) ∈ (CL)N

such that the (L + 1)×(L + 1) matrix 
[
G(c(1))|Λ(1) ··· G(c(N))|Λ(N)

a∗

]
is invertible, which 

in turn implies that the determinant of 
[
G(c(1))|Λ(1) ··· G(c(N))|Λ(N)

a∗

]
is a nontrivial poly-

nomial in the variables c(1)0 , . . . , c(1)L−1, . . ., c
(N)
0 , . . . , c(N)

L−1. Hence, the set of all vectors 
(c(1), . . . , c(N)) ∈ (CL)N such that 

[
G(c(1))|Λ(1) ··· G(c(N))|Λ(N)

a∗

]
is invertible is a dense 

open subset of (CL)N with full Lebesgue measure. �
Proof of Theorem 30. If |Λm| =

∑N
n=1 |Λm,n| = L + 1 for some m, then the matrix (13)

reduces to [
G(c(1),...,c(N))|Λm

a∗
m

]
=
[
G(c(1))|Λm,1

··· G(c(N))|Λm,N

a∗
m

]
and the claim follows directly from Theorem 29. Therefore, we may assume that |Λm| ≤ L

for m = 1, . . . , M . Observe that each of the column spaces of⎡⎢⎢⎢⎢⎢⎣
G(c(1), . . . , c(N))|Λ1

0
...
0
a∗

1

⎤⎥⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎢⎣
0

G(c(1), . . . , c(N))|Λ2
...
0
a∗

2

⎤⎥⎥⎥⎥⎥⎦ , . . . ,

⎡⎢⎢⎢⎢⎢⎣
0
0
...

G(c(1), . . . , c(N))|ΛM

a∗
M

⎤⎥⎥⎥⎥⎥⎦
has trivial intersection with the others because of the positioning of zero matrices. By 
Theorem 29, we can find a vector (c(1), . . . , c(N)) ∈ (CL)N such that each of the matrices 
above has full column rank. This in turn implies that the determinant of the (L +
1)×(L + 1) matrix (13) is a nontrivial polynomial in the variables c(1)0 , . . . , c(1)L−1, . . ., 
c
(N)
0 , . . . , c(N)

L−1. Hence, the set of all vectors (c(1), . . . , c(N)) ∈ (CL)N such that the matrix 
(13) is invertible is a dense open subset of (CL)N with full Lebesgue measure. �
7.6. Proof of the first part of Theorem 31, based on Corollary 4

Assume that S ⊂ R2 is a Jordan domain (a bounded set whose boundary is a Lebesgue 
zero set) with measure |S| < 1. Then we can choose T > 0 small and L ∈ N large so that 
S is contained in a fundamental domain of the lattice (LT )Z×(1/T )Z and S intersects 
with at most L rectangles of the form [kT, (k + 1)T )×[ �

LT , 
�+1
LT ) with k, � ∈ Z, where 

the set of all such pairs (k, �) are distinct in ZL×ZL (cf. Remark 20 in [18]). Choosing 
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any vector c = {cn}L−1
n=0 ∈ CL from the set S in Theorem 3, we design a pilot signal 

g =
∑

n∈Z cnδnT where {cn}n∈Z is the L-periodic extension of c, i.e., cn+L = cn for 
n ∈ Z.

Since S is contained in a fundamental domain of (LT )Z×(1/T )Z, it follows that 
Hg ∈ L2(R) for every H ∈ OPW (S). Moreover, it holds that for H ∈ OPW (S),

ZLT
L Hg(t, ν) = G(c) �ηH(t, ν), (22)

where ZLT
L is the L-dimensional vector valued Zak transform

ZLT
L f(t, ν) =

⎛⎜⎜⎜⎝
ZLT f(t, ν)

ZLT f(t + T, ν) e−2πiTν

...
ZLT f(t + (L−1)T, ν) e−2πi(L−1)Tν

⎞⎟⎟⎟⎠
with ZLT defined densely on L2(R) by

ZLT f(t, ν) =
∑
n∈Z

f(t + nLT ) e−2πinLTν ,

and �ηH(t, ν) = {�ηH(t, ν)(k,�)}L−1
k,�=0 is the L2-dimensional vector valued function defined 

by

�ηH(t, ν)(k,�) = 1
LT

∑
p∈Z

∑
q∈Z

ηH
(
t + (pL + k)T, ν + (qL + �) 1

LT

)
e−2πi(pL+k)Tν .

For a proof of (22), we refer to Lemma 2.7 and Remark 2.8 in [17] (also see [18, 
Lemma 44]).

Note that equality (22) holds in locally L2 sense and therefore pointwise almost every-
where. Further, due to the quasi-periodicity of ZLT

L Hg and �ηH , it is enough to observe 
(22) for a.e. (t, ν) in [0, T )×[0, 1

LT ). Therefore, the continuous-time problem is reduced 
to a family of finite-dimensional problems (22) indexed by a.e. (t, ν) ∈ [0, T )×[0, 1

LT ).
Let us denote by Λ the set of all pairs (k, �) ∈ Z×Z such that S intersects with 

[kT, (k + 1)T )×[ �
LT , 

�+1
LT ); then we have |Λ| ≤ L. Since all elements of Λ are distinct in 

ZL×ZL, the set Λ′ = {(k′, �′) ∈ ZL×ZL : (pL + k′, qL + �′) ∈ Λ for some p, q ∈ Z} is of 
cardinality |Λ′| = |Λ| ≤ L. This implies that �ηH(t, ν)(k,�) = 0 for (t, ν) ∈ [0, T )×[0, 1

LT )
and (k, �) /∈ Λ′, which reduces equation (4) to

ZLT
L Hg(t, ν) = G(c)|Λ′ �ηH(t, ν)|Λ′ a.e. (t, ν) ∈ [0, T )×[0, 1

LT ).

Then for a.e. (t, ν) ∈ [0, T )×[0, 1
LT ) fixed, we can apply the finite dimensional result 

(Corollary 4) to solve the equation for �ηH(t, ν)|Λ′ .
Now that we have the L2-dimensional vector valued function �ηH(t, ν) for a.e. (t, ν) ∈

[0, T )×[0, 1 ), it remains to show that the spreading function ηH can be fully determined 
LT
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from �ηH . To see this, we note that supp ηH ⊂ S is contained in a fundamental domain of 
(LT )Z×(1/T )Z, and thus for each (t, ν) ∈ [0, T )×[0, 1

LT ) and (k, �) ∈ ZL×ZL at most 
one of the values ηH(t + (pL + k)T, ν + (qL + �) 1

LT ), p, q ∈ Z, is nonzero. Therefore, 
ηH can be recovered directly from �ηH(t, ν) for a.e. (t, ν) ∈ [0, T )×[0, 1

LT ). Hence, we 
conclude that OPW (S) is identifiable.

Declaration of Competing Interest

There is no competing interest.

Acknowledgements

This work was supported by the German Research Foundation (DFG) within the 
priority program Compressed Sensing in Information Processing (CoSIP) under Grants 
PF 450/9-1 and PO 1347/3-1. Part of this work was presented at the 43rd IEEE Intern. 
Conf. on Acoustics, Speech, and Signal Processing (ICASSP), Calgary, Canada, April 
2018 [23].

References

[1] G.E. Pfander, D. Walnut, Measurement of time-variant channels, IEEE Trans. Inform. Theory 
52 (11) (2006) 4808–4820.

[2] R. Heckel, H. Bölcskei, Identification of sparse linear operators, IEEE Trans. Inform. Theory 59 (12) 
(2013) 7985–8000.

[3] D. Tse, P. Viswanath, Fundamentals of Wireless Communication, Cambridge University Press, 
Cambridge, 2005.

[4] G. Matz, F. Hlawatsch, Chapter 1 – Fundamentals of time-varying communication channels, in: 
F. Hlawatsch, G. Matz (Eds.), Wireless Communications over Rapidly Time-Varying Channels, 
Academic Press, Oxford, 2011, pp. 1–63.

[5] P. Bello, Characterization of randomly time-variant linear channels, IEEE Trans. Commun. Syst. 
11 (4) (1963) 360–393.

[6] T. Kailath, Time-variant communication channels, IEEE Trans. Inform. Theory 9 (4) (1963) 
233–237.

[7] G.E. Pfander, Measurement of time-varying multiple-input multiple-output channels, Appl. Com-
put. Harmon. Anal. 24 (3) (2008) 393–401.

[8] R. Heckel, H. Bölcskei, Identification of sparse linear operators, IEEE Trans. Inform. Theory 59 (12) 
(2013) 7985–8000.

[9] G.E. Pfander, P. Zheltov, Identification of stochastic operators, Appl. Comput. Harmon. Anal. 
26 (2) (2014) 256–279.

[10] E. Telatar, Capacity of multi-antenna gaussian channels, Eur. Trans. Telecommun. 10 (6) (1999) 
585–595.

[11] D.-S. Shiu, G.J. Foschini, M.J. Gans, J.M. Kahn, Fading correlation and its effect on the capacity 
of multielement antenna systems, IEEE Trans. Commun. 48 (3) (2000) 502–513.

[12] V. Jungnickel, V. Pohl, C. von Helmolt, Capacity of MIMO systems with closely-spaced antennas, 
IEEE Commun. Lett. 7 (8) (2003) 361–363.

[13] H.N.M. Mbonjo, J. Hansen, V. Hansen, MIMO capacity and antenna array design, in: IEEE Global 
Telecommunications Conference (GLOBECOM), vol. 5, 2004, pp. 3155–3159.

[14] E.G. Larsson, O. Edfors, F. Tufvesson, T.L. Marzetta, Massive MIMO for next generation wireless 
systems, IEEE Commun. Mag. 52 (2) (2014) 186–195.

[15] J.W. Wallace, M.A. Jensen, Mutual coupling in MIMO wireless systems: a rigorous network theory 
analysis, IEEE Trans. Wirel. Commun. 3 (4) (2004) 1317–1325.

http://refhub.elsevier.com/S0024-3795(19)30312-X/bib50573036s1
http://refhub.elsevier.com/S0024-3795(19)30312-X/bib50573036s1
http://refhub.elsevier.com/S0024-3795(19)30312-X/bib68625F5449543133s1
http://refhub.elsevier.com/S0024-3795(19)30312-X/bib68625F5449543133s1
http://refhub.elsevier.com/S0024-3795(19)30312-X/bib5473655F426F6F6Bs1
http://refhub.elsevier.com/S0024-3795(19)30312-X/bib5473655F426F6F6Bs1
http://refhub.elsevier.com/S0024-3795(19)30312-X/bib4D61747A32303131s1
http://refhub.elsevier.com/S0024-3795(19)30312-X/bib4D61747A32303131s1
http://refhub.elsevier.com/S0024-3795(19)30312-X/bib4D61747A32303131s1
http://refhub.elsevier.com/S0024-3795(19)30312-X/bib42656C6C6F3633s1
http://refhub.elsevier.com/S0024-3795(19)30312-X/bib42656C6C6F3633s1
http://refhub.elsevier.com/S0024-3795(19)30312-X/bib4B61696C6174683633s1
http://refhub.elsevier.com/S0024-3795(19)30312-X/bib4B61696C6174683633s1
http://refhub.elsevier.com/S0024-3795(19)30312-X/bib50663038s1
http://refhub.elsevier.com/S0024-3795(19)30312-X/bib50663038s1
http://refhub.elsevier.com/S0024-3795(19)30312-X/bib4865426F3133s1
http://refhub.elsevier.com/S0024-3795(19)30312-X/bib4865426F3133s1
http://refhub.elsevier.com/S0024-3795(19)30312-X/bib505A2D49534Fs1
http://refhub.elsevier.com/S0024-3795(19)30312-X/bib505A2D49534Fs1
http://refhub.elsevier.com/S0024-3795(19)30312-X/bib54656C617461723939s1
http://refhub.elsevier.com/S0024-3795(19)30312-X/bib54656C617461723939s1
http://refhub.elsevier.com/S0024-3795(19)30312-X/bib536869753030s1
http://refhub.elsevier.com/S0024-3795(19)30312-X/bib536869753030s1
http://refhub.elsevier.com/S0024-3795(19)30312-X/bib4A50485F436C6F73656C79537061636564416E74656E6E61735F3033s1
http://refhub.elsevier.com/S0024-3795(19)30312-X/bib4A50485F436C6F73656C79537061636564416E74656E6E61735F3033s1
http://refhub.elsevier.com/S0024-3795(19)30312-X/bib4D626F6E6A6F3034s1
http://refhub.elsevier.com/S0024-3795(19)30312-X/bib4D626F6E6A6F3034s1
http://refhub.elsevier.com/S0024-3795(19)30312-X/bib4C6172736F6E4D6173736976654D494D4F3134s1
http://refhub.elsevier.com/S0024-3795(19)30312-X/bib4C6172736F6E4D6173736976654D494D4F3134s1
http://refhub.elsevier.com/S0024-3795(19)30312-X/bib57616C4A656E3034s1
http://refhub.elsevier.com/S0024-3795(19)30312-X/bib57616C4A656E3034s1


470 D.G. Lee et al. / Linear Algebra and its Applications 581 (2019) 435–470
[16] D. Gesbert, H. Bölcskei, D. Gore, A. Paulraj, MIMO wireless channels: capacity and performance 
prediction, in: IEEE Global Telecommun. Conf., vol. 2, 2000, pp. 1083–1088.

[17] D.G. Lee, G.E. Pfander, V. Pohl, Sampling and reconstruction of multiple-input multiple-output 
channels, IEEE Trans. Signal Process. 67 (4) (2019) 961–976.

[18] G.E. Pfander, D.F. Walnut, Sampling and reconstruction of operators, IEEE Trans. Inform. Theory 
62 (1) (2016) 435–458.

[19] J. Lawrence, G.E. Pfander, D. Walnut, Linear independence of gabor systems in finite dimensional 
vector spaces, J. Fourier Anal. Appl. 11 (6) (2005) 715–726.

[20] R.-D. Malikiosis, A note on Gabor frames in finite dimensions, Appl. Comput. Harmon. Anal. 38 (2) 
(2015) 318–330.

[21] G.E. Pfander, Sampling of operators, J. Fourier Anal. Appl. 19 (3) (2013) 612–650.
[22] W. Kozek, G.E. Pfander, Identification of operators with bandlimited symbols, SIAM J. Math. 

Anal. 37 (3) (2005) 867–888.
[23] D.G. Lee, G.E. Pfander, V. Pohl, W. Zhou, Identification of multiple-input multiple-output channels 

under linear side constraints, in: Proc. 43rd Intern. Conf. on Acoustics, Speech, and Signal Processing 
(ICASSP), Calgary, Canada, 2018.

http://refhub.elsevier.com/S0024-3795(19)30312-X/bib476573626572743030s1
http://refhub.elsevier.com/S0024-3795(19)30312-X/bib476573626572743030s1
http://refhub.elsevier.com/S0024-3795(19)30312-X/bib4C505031372D73616D706C696E672D7265636F6Es1
http://refhub.elsevier.com/S0024-3795(19)30312-X/bib4C505031372D73616D706C696E672D7265636F6Es1
http://refhub.elsevier.com/S0024-3795(19)30312-X/bib50573136s1
http://refhub.elsevier.com/S0024-3795(19)30312-X/bib50573136s1
http://refhub.elsevier.com/S0024-3795(19)30312-X/bib4C50573035s1
http://refhub.elsevier.com/S0024-3795(19)30312-X/bib4C50573035s1
http://refhub.elsevier.com/S0024-3795(19)30312-X/bib4D616C3135s1
http://refhub.elsevier.com/S0024-3795(19)30312-X/bib4D616C3135s1
http://refhub.elsevier.com/S0024-3795(19)30312-X/bib5066613130s1
http://refhub.elsevier.com/S0024-3795(19)30312-X/bib4B503035s1
http://refhub.elsevier.com/S0024-3795(19)30312-X/bib4B503035s1
http://refhub.elsevier.com/S0024-3795(19)30312-X/bib4C50505A5F4943415353503138s1
http://refhub.elsevier.com/S0024-3795(19)30312-X/bib4C50505A5F4943415353503138s1
http://refhub.elsevier.com/S0024-3795(19)30312-X/bib4C50505A5F4943415353503138s1

	Identiﬁcation of channels with single and multiple inputs and outputs under linear constraints
	1 Introduction
	2 Background and problem formulation
	2.1 Channel identiﬁcation in ﬁnite dimensions
	2.2 Gabor system matrices
	2.3 Multiple-input multiple-output channel operators
	2.4 Linear relations between and within subchannels

	3 Identiﬁcation results for SISO channels with constraints
	3.1 Sufﬁcient conditions

	4 Identiﬁcation of MIMO channels under linear constraints
	5 Applications to continuous-time channel identiﬁcation and operator sampling
	5.1 Continuous-time SISO channels
	5.2 Continuous-time MIMO channels

	6 Conclusion
	7 Proofs
	7.1 Proof of Assertions in Example 13
	7.2 Proof of Theorem 7 and Theorem 8
	7.3 Proof of Theorem 15 and Lemma 16
	7.4 Proof of Theorems 24 and 26
	7.5 Proof of Lemma 28 and Theorems 29 and 30
	7.6 Proof of the ﬁrst part of Theorem 31, based on Corollary 4

	Acknowledgements
	References


