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Abstract—Gabor analysis is playing an important role in
time-frequency analysis for the last 60 years. The fundamental
concept of Gabor frames has become a focus also in the finite
dimensional setting. Here, we study which sets of discrete time
frequency shifts admit a proper choice of window vector, so that
they generate an orthonormal Gabor basis in the underlying
finite dimensional vector space. We fully characterize such
time-frequency shift sets in the case that the vector space
dimension is a prime number.
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I. INTRODUCTION

Since its debut in a 1946 seminal paper ([5]), Gabor analysis
has evolved quickly and has become an indispensable tool
in time-frequency analysis (for example, see [4, 6, 8]).
The fundamental idea behind it, i.e., to deompose a
communications channel into small subchannels supported
in rectangular boxes on the time-frequency plane, can also
be considered for finite dimensional vector spaces (see
[11]). Finite dimensional Gabor frames feature many nice
properties and find their application in various areas, see
[10, 1, 3, 12, 14, 15, 16].

Nevertheless, many numerical aspects of finite dimensional
Gabor frames are barely studied yet. This article aims to
explore this fairly blank area. Here we focus on constructing
orthonormal Gabor basis on irregular subsets from the full
lattice of time frequency shifts, i.e., we aim to answer
the following question: Which subsets of the discrete time
frequency plane can actually admit a proper choice of
window vector, so that together they form a orthonormal
basis (i.e., orthonormal Gabor basis) for the underlying finite
dimensional vector spaces.

We will give a full characterization of the scenario when
the dimension is a prime number. This has a direct application
to the operator identification problem (see [13]) which the
authors are particularly interested in, and helps to understand
the structure of tight subframes from the full discrete Gabor
frame.

To better describe our setting, as well as to facilitate
the subsequent content, we first introduce our notation and
definitions.

Let N be a prime number, and let CN be the space of
N dimensional complex vectors, equipped with the Euclidean
norm ‖·‖. Let CN×N be the space of N×N matrices equipped
with the Hilbert-Schmidt norm ‖ · ‖HS , i.e., the `2 norm of
its entries. The inner products on both spaces are denoted as
〈·, ·〉, i.e.,

〈x, y〉 = y∗x, x, y ∈ CN ,

〈A,B〉 = tr(AB∗), A,B ∈ CN×N ,

where A∗ (resp. x∗) denotes the adjoint of A (resp. x), and
tr(A) is its trace.

Let
w = e

2πi
N ,

be the first primitive root of unity, and let

W =
1√
N


1 1 . . . 1
1 w1 . . . (wN−1)1

...
...

. . .
...

1 (w)N−2 . . . (wN−1)N−2

1 (w)N−1 . . . (wN−1)N−1

 ,

be the unitary inverse discrete Fourier matrix, i.e.,

Wmn =
1√
N
w(m−1)(n−1). (1)

For j, k ∈ Z, the matrices
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act as frequency shifts (modulation), and time shifts (trans-
lation) on CN . Similar to the continuous case, these discrete



time frequency shifts are connected via the discrete Fourier
transform as

T k = WM−kW ∗.

With this setting, one can define the (full) discrete Gabor
system {M jT kd}j,k=0,1,2,...N−1 with respect to any window
vector d ∈ CN . Regardless of the choice of d, the set
{M jT kd}j,k=0,1,2,...N−1 is always a tight frame [11].

Consider the group ZN ×ZN . If Γ is a subset of ZN ×ZN ,
then we use the notation (d,Γ) to denote the set of vectors
consists of discrete time frequency shifts supported on Γ, and
applied to d, i.e.,

(d,Γ) = {Mm1Tn1d,Mm2Tn2d, . . .}, (2)

where (m1, n1), (m2, n2), . . . ∈ Γ ⊆ ZN × ZN .

Our main problem now posed as follows. Given

Γ = {(j1, k1), (j2, k2), . . . , (jN , kN )} ⊂ ZN × ZN ,

a proper subset of ZN × ZN with cardinality N . What
conditions does Γ need to satisfy so that one can find a
d ∈ CN for (d,Γ) to be an orthonormal basis for CN?

The motivating application is, as described in [13], the
identification problem for underspread operators that can
be reconstructed by means of so-called operator sampling.
The design of an identifier mandates the construction of a
vector d in CN so that (d,Γ) is a Riesz basis. The set Γ is
given and decodes the bandlimitation (spreading support) of
the unknown operator. Stability of the operator identification
procedure profits from (d,Γ) being close to an orthonormal
system.

The remaining part of this article is organized as follows.
In the next section we establish properties of discrete time
frequency shifts and discrete Gabor frames that are necessary
for our proof, in Section III we prove that the answer to the
above question is the following.

Theorem 1. There exists d ∈ CN for (d,Γ) to be an
orthonormal basis of CN if and only if there is a proper (and
non-trivial) subgroup V of ZN × ZN such that

ZN×ZN = Γ+V = {(j+j′, k+k′) : (j, k) ∈ Γ, (j′, k′) ∈ V }.

In other words, one can find d ∈ CN for (d,Γ) to be an
orthonormal basis of CN if and only if Γ contains precisely
one element from each coset of a subgroup V .

II. PROPERTIES OF DISCRETE TIME FREQUENCY SHIFTS
AND DISCRETE GABOR FRAMES

Here, we list of few properties needed to prove Theorem 1.
We omit proof details since these properties can be verified
directly.

Lemma II.1 (Frame Properties) The following holds:
1) { 1√

N
M jT k}j,k=0,1,2,...,N−1 is an orthonormal basis for

the matrix space CN×N .
2) {M jT kd}j,k=0,1,2,...,N−1 is a tight frame on CN with

frame constant N‖d‖2 for any d ∈ CN .

Lemma II.2 (Commutativity) M j and T k commute up to a
phase factor, i.e.,

M jT k = wjkT kM j .

Consequently, if

kj′ ≡ jk′ (mod N), (3)

then M jT k and M j′T k
′

commute, and can be simultaneously
diagonalized.

The finite Heisenberg group of order N3 consists of tuples
(h, j, k) with h, j, k ∈ ZN and the group law

(h, j, k)� (h′, j′, k′) 7→ (h+ h′ − kj′, j + j′, k + k′),

hence it can be viewed as the semiproduct

(ZN × ZN ) oφ ZN ,

where
φ : ZN 7→ Aut(ZN × ZN ),

is given as

(φ(k))((h′, j′)) = (h′ − kj′, j′).

One may verify that since N is prime, each φ(k) is indeed a
group automorphism of ZN × ZN , and thus the semiproduct
is well defined. A concise list of properties of the finite
Heisenberg group can be found in [9].

It is easy to see using Lemma II.2 that

ρ : (h, j, k) 7→ whM jT k,

is a representation of this finite group. Denote H as the above
group {whM jT k}h,j,k=0,1,2,...,N−1. Then by Lemma II.2, the
center of H is

Z(H) = {whI}h=0,1,2,...,N−1 = {ρ(h, 0, 0)}h=0,1,2,...,N−1.

Let us denote F̃ as the quotient group

F̃ = H/Z(H) ∼= ZN × ZN .

and use � to denote the group operation on F̃ .

Let
M̃ j T̃ k = {whM jT k}h=0,1,2,...,N−1,

then we have

F̃ = {M̃ j T̃ k}j,k=0,1,2...N−1,

M̃ j T̃ k � M̃ j′ T̃ k
′

= M̃ j+j′ T̃ k+k
′
.



Lemma II.3 (Subgroup Structure) If N is a prime number,
then the only subgroups in ZN × ZN are

Vs =

{
{(ks, k)}k=0,1,2,...N−1, s = 0, 1, 2, . . . N − 1

{(j, 0)}j=0,1,2,...N−1, s =∞

and they pairwise intersect trivially.

If Γ is a subset of ZN ×ZN , then we use the notation Γ̃ to
denote the corresponding subset in F̃ , i.e.,

Γ̃ = {M̃ j T̃ k : (j, k) ∈ Γ},

and vice versa. In particular, Vs would denote the following
subsets

Ṽs =

{
{M̃ksT̃ k}k=0,1,2,...N−1, s = 0, 1, 2, . . . N − 1

{M̃ j}j=0,1,2,...N−1, s =∞
,

and one may also verify using Lemma II.2 that for fixed s,
members in {MksT k}k=0,1,2,...,N−1 commute.

Lemma II.4 (Eigenstructure) Let D be the diagonal matrix
in which the `-th entry on the main diagonal is

D`` = w0+1+2+...+(`−1),

then for N odd, we have:
1) The eigenvectors of M1,M2, . . . ,MN−1 are precisely

the Euclidean column basis.
2) For s = 0, 1, 2, . . . , N −1 and k = 1, 2, . . . , N −1, each

MksT k ∈ Vs can be diagonalized as

MksT k = w−
k(k−1)s

2 DsWM−kW ∗(Ds)∗.

Let x be a vector of unit length. We introduce the notation

Px = xx∗

to denote the orthogonal projection onto the span of the vector
x ∈ CN .

Lemma II.5 The following holds:
1)

〈M jT k, Px〉 = 〈M jT kx, x〉.

2) For any A ∈ CN×N , one has

M jA(M j)∗ = NA ◦ Puj ,

where ◦ denotes the Hadamard product.

Lemma II.6 If R ∈ N and R < N , then for

{j1, j2, . . . , jR} ⊂ {1, 2, . . . , N},

and a1, a2, . . . , aR ∈ N, we have
1)

a1w
j1 + a2w

j2 + . . .+ aRw
jR 6= 0.

2) Each entry on the main diagonal of a1Puj1 + a2Puj2 +
. . .+ aRPujR is (a1 + a2 + . . .+ aR)/N .

3) Each off diagonal entry of a1Puj1 +a2Puj2 +. . .+aRPujR
is non zero.

Denote the columns in W (as defined in (1)) as
u0, u1, . . . , uN−1.

Lemma II.7 Assume N is odd and D as given in Lemma
II.4, then for any s, ` = 0, 1, 2, . . . , N − 1, if x = Dsu` is a
column of DsW , then M jx and T kx are still columns (up to
a phase difference) in DsW with explicit formula:

M jDsu` = Dsu`+j ,

T kDsu` = w−
k(k−1)s+2k`

2 Dsu`−ks,

where (throughout this paper) addition and multiplication of
indices are understood as operations in the finite field ZN .

Lemma II.8 If x is a unit eigenvector of any element in Vs
for some fixed s ∈ {0, 1, 2, . . . , N − 1,∞}, then

Px ⊥ (Vs′ \ {I}) for any s′ 6= s.

III. SKETCH OF PROOF FOR THEOREM 1

Using the notations and concepts from the last section, we
can restate our result alternatively as follows,

Theorem 1. There exists d ∈ CN for (d,Γ) to be an
orthonormal basis of CN if and only if there is a proper (and
non-trivial) subgroup Vs of ZN × ZN such that

ZN×ZN = Γ+Vs = {(j+j′, k+k′) : (j, k) ∈ Γ, (j′, k′) ∈ Vs}.
(4)

And in such cases, it suffices to choose d to be any shared
unit eigenvector of the members in Vs.

Proof. We give a sketch of proof by listing the main steps
below.

Lemma II.3 listed all subgroups to be considered.

For convenience, denote the elements in Γ as

Γ = {(j1, k1), (j2, k2), . . . , (jN , kN )},

and set

G = (M j1T k1d, M j2T k2d, . . . , M jNT kNd) ,

Gs =
(
d MsT 1d, M2sT 2d, . . . , M (N−1)sTN−1d

)
for s ∈ {0, 1, 2, . . . , N − 1} and

G∞ = (d M1d, M2d, . . . , MN−1d) .

In other words, G is a matrix form of (d,Γ) and Gs is a
matrix form of (d, Vs).

Sufficiency: Suppose that for given Γ, there exists some Vs
that satisfies (4).

Choose d to be a unit eigenvector of members in Vs, then
clearly all columns in G are of unit norm, thus it suffice to
show that they are pairwise orthogonal.



Define the first order difference set ∆Γ̃ of Γ̃ to be

∆Γ̃ = {M̃ j−j′ T̃ k−k
′

: M̃ j T̃ k, M̃ j′ T̃ k
′
∈ Γ}.

It is obvious from (4) that

I /∈ ∆Γ̃.

By Lemma II.5 (1), to show columns in G are pairwise
orthogonal, it suffice to establish

Pd ⊥ ∆Γ̃.

To prove this, we observe that (4) necessarily implies

∆Γ̃ ∩ Ṽs = ∅. (5)

Indeed, by a counting argument we must have that if M̃mT̃n

and M̃m′ T̃n
′

are distinct elements in Ṽs, then

(M̃mT̃n � Γ̃) ∩ (M̃m′ T̃n
′
� Γ̃) = ∅, (6)

while if (5) does not hold and

(∆Γ̃ ∩ Ṽs) 3 M̃aT̃ b,

then since I /∈ ∆Γ̃, we have

M̃aT̃ b 6= M̃0T̃ 0,

while by definition of ∆Γ̃ we would have

(M0T̃ 0 � Γ̃) ∩ (M̃aT̃ b � Γ̃) 6= ∅,

which contradicts (6).

Now that we have established (5), it follows that

∆Γ̃ ⊆ (F̃ \ Ṽs) =
⋃
s′ 6=s

s′∈{0,1,2,...,N−1,∞}

Ṽs′ \ {I},

hence by Lemma II.8 we can conclude that

Pd ⊥ ∆Γ̃.

To prove necessity, we first assume the contrary, i.e., sup-
pose there exists d such that (d,Γ) is an orthonormal basis
of CN and (4) fails for all s ∈ {0, 1, 2, . . . , N − 1,∞}.
Then we show that (d,Γ) being an orthonormal basis of CN
while (4) fails implies that (d, Vs) (and consequently Gs) is an
orthonormal basis of CN for all s ∈ {0, 1, 2, . . . , N − 1,∞},
but then Lemma II.5 would imply that

Pd ⊥ (F \ {I}).

By Lemma II.1, this would imply that Pd is a constant
multiple of the identity, which is impossible since Pd only
has rank 1. This way we derive a contradiction.

Let us first consider a fixed s ∈ {0, 1, 2, . . . , N − 1}.

It is easy to verify that

F̃ = Ṽ∞ � Ṽs.

Now each M̃ j T̃ k�Ṽs is a coset of Ṽs, therefore both Ṽ∞�Ṽs
and Γ̃� Ṽs are unions of cosets of Ṽs. Recall that by Lemma
II.3, Ṽs is a subgroup, thus there are only N distinct cosets.
Hence we can find a map f from Γ̃ into Ṽ∞ such that

M̃ j` T̃ k` � Ṽs = f(M̃ j` T̃ k`)� Ṽs,

for all ` ∈ {1, 2, . . . , N}.

Denote

J = {f(M̃ j` T̃ k`) : M̃ j` T̃ k` ∈ Γ̃},

i.e., the range of f , and set

R = |J |.

Since (4) is not satisfied, we have

R < N.

Let us write the elements in J as M̃ `1 , M̃ `2 , . . . , M̃ `R , and
define

am = |f−1(M̃ `m)|,

for all m = 1, 2, . . . , R.. i.e., am counts the number of
elements in the pre-image of M̃ `m . In particular, it holds that

a1 + a2 + . . .+ aR = |Γ̃| = N.

By our assumption G is unitary, thus columns in

Bs =
(
G MsT 1G . . . M (N−1)sTN−1G

)
,

form a tight frame with frame bound N since it contains N
unitary matrices collected together.

On the other hand, our previous derivation shows that after
permuting the columns and scaling them by a phase factor,
Bs can be rearranged into

B′s = ( f(M j1T k1)Gs . . . f(M jNT kN )Gs ) ,

which is also a tight frame with frame bound N as Bs.

Consequently we get

NI = B′s(B
′
s)
∗

= NGsG
∗
s ◦ (a1Pu`1 + a2Pu`2 + . . .+ aRPu`R ),

where the second equality follows from the definition of
a1, a2, . . . , aR and Lemma II.5.

Now since R < N , we use Lemma II.6 to conclude that
each off diagonal entry of a1Puj1 + a2Puj2 + . . . + aRPujR
is non zero, and each main diagonal entry of it is

1

N
(a1 + a2 + . . .+ aR) = 1.

Thus comparing both sides of the above equation, we obtain
that

I = GsG
∗
s,



which shows that Gs is unitary, and thus (d, Vs) is unitary.

The case s =∞ can be derived with similar computations,
and together these complete the proof.

Remark 1. Here we give a geometric interpretation of the
condition in (4):

Consider a grid that consists of N ×N boxes, each box is
mapped to an element in F̃ as follows: counting from left to
right, bottom to top, (j, k) maps to the box at the intersection
of the j + 1-st column and the k + 1-st row. Thus each Γ
uniquely maps to a domain consists of N boxes, and shifting
Γ by the elements in Vs can be interpreted as translating the
domain by a certain number of boxes along a line of slope s.

Under this construction, (4) is equivalent to saying that there
exists some s, such that shifting the domain along the line of
slope s by 0, 1, 2, . . . , N−1 boxes and periodizing by the grid
leads a tiling of the grid. Below is an example for N = 3 with

Γ = {(0, 0), (0, 1), (1, 0)},

Each box of the corresponding domain has been marked by
X , and the image of each shift of it along the diagonal line
(s = 1) has been marked Y and Z respectively. The coloring
demonstrates the periodization. We see that in this case, these
shifts tiles up the original grid, i.e.,

ZN × ZN = Γ + V1,

and choosing d to be a shared unit eigenvector of members in
Ṽ1 makes (d,Γ) an orthonormal basis of CN .

X X

X Y Y

Y Z Z

Z

Z

Z

X : Γ + (0, 0)
Y : Γ + (1, 1)
Z : Γ + (2, 2)

Remark 2. A bi-unimodular sequence (or a CAZAC
sequences, CAZAC stands for Constant Amplitude Zero
Auto Correlation Sequences) is a sequence that is unimodular
before and after applying the discrete Fourier transform. Such
sequences are of special interests in engineering and are also
connected to the so called cyclic N -roots. See, for example,
[7] and [2] for related concepts.

By Lemma II.5 (1), we can see that x is bi-
unimodular if and only if Px is orthogonal to all the
pure time shifts T 1, T 2, . . . , TN−1 and pure frequency shifts
M1,M2, . . . ,MN−1. Thus Lemma II.4 and II.8 shows that
eigenvectors of Ṽs (namely columns in

√
NDsW ) for s =

1, 2, . . . , N −1 are biunimodular sequences, and the quotients
of their adjacent entries form the classical solutions for uni-
modular cyclic N -roots (But as is known, these are not the
only biunimodular sequences, see examples in [2]).
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