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We show that orthonormality of a discrete Gabor bases on Cn hinges heavily on the 
following pattern of its support set Γ ⊂ Zn ×Zn: (i) Γ is itself a subgroup of order 
n, or (ii) Γ is the quotient of such a subgroup, i.e., there exists an order n subgroup 
H�Zn×Zn such that Γ takes precisely one element from each coset of H (i.e., Zn×
Zn = H×Γ). If n is a prime number, then Γ satisfying (i) automatically implies that 
it satisfies (ii), and the condition is both sufficient and necessary. If n is a composite 
number, then (i) and (ii) do not necessarily imply each other, and the condition 
is sufficient (whether it is also necessary is unknown yet). Main contributions of 
this article are (a) necessity of the condition for prime n; (b) sufficiency of (i) for 
composite n; (c) the characterization that if Γ is an order n subgroup, then its 
corresponding discrete time-frequency shifts mutually commute.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Gabor frames [1] are indispensable tools in modern time-frequency analysis. They are commonly used 
in science and engineering to decompose signals into localized building blocks on the time-frequency plane 
(see, e.g., [8,10,14–16,20]). Discrete Gabor systems are counterparts of Gabor frames on finite dimensional 
spaces, their rich structure has also attracted persistent research interest ever since their emergence (e.g., 
see [5–7,17,19]).

To understand the goal of this short note, let us first introduce relevant notions. On Cn, define the 
discrete translation T and discrete modulation M to be
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where ω = e
2πi
n is a primitive n-th root of unity. In particular, T acts on Cn as the circulant permutation 

(x1, x2, . . . , xn)T �→ (xn, x1, x2 . . . xn−1)T .
Discrete time frequency shifts are related through the discrete Fourier transform as

T = WM∗W ∗ = W ∗MW, (1)

where ∗ denotes the adjoint operation, and W with Wij = ω(i−1)(j−1)/
√
n is the Fourier matrix.

Just like their continuous counterparts, discrete time-frequency shifts also commute up to a phase factor 
ω:

MT = ωTM, (2)

and {ω, M, T} together under multiplication generates a representation of the finite Heisenberg group, see 
e.g., [9,12].

In various literature it is also customary to adopt following notations:

π(j, k) = M jT k,

and

π(H) = {π(j, k) : (j, k) ∈ H ⊆ Zn × Zn},

where Zn is the additive cyclic group of n elements. It is easy to verify using (2) that π(j, k) commutes with 
π(j′, k′) if and only if

kj′ ≡ jk′ mod n. (3)

It is also worth mentioning that π is not a group homomorphism, thus π(H) is not necessarily a group 
even if H is. For example, take H as the cyclic subgroup generated by (1, 1), then π(1, 1) = MT , while its 
inverse T−1M−1 = ω−1M−1T−1 is not in π(H).

We also introduce the notation π∗(j, k) to denote the adjoint of π(j, k), i.e.,

π∗(j, k) = T−kM−j ,

It follows immediately from (2) that

π(j′, k′)π(j, k) = ω−jk′
π(j + j′, k + k′), (4)

and

π∗(j, k)π∗(j′, k′) = ωjk′
π∗(j + j′, k + k′). (5)
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A discrete Gabor system (Γ, �c) on Cn takes the form

(Γ,�c) = {π(j, k)�c : (j, k) ∈ Γ ⊆ Zn × Zn, �c ∈ Cn}.

Here �c ∈ Cn is the window vector, Γ ⊆ Zn × Zn is the support of this system. It is called a Gabor matrix 
if written into the matrix form with π(j, k)�c being its column vectors. The corresponding Gabor matrix is 
denoted as GΓ(�c), the ordering of columns does not matter in this article.

(Γ, �c) is said to be a discrete Gabor frame if it forms a frame for Cn, similarly it is called a discrete Gabor 
basis if it forms a basis for Cn, two trivial examples of Gabor bases are

(i)
(
{0} × Zn, (1, 0, . . . , 0)T

)
. This consists of all circulant shifts on (1, 0, . . . , 0)T and is the usual Euclidean 

basis;
(ii)

(
Zn × {0}, 1√

n
(1, 1, . . . , 1)T

)
. This consists of all modulations on 1√

n
(1, 1, . . . , 1)T and is the Fourier 

basis, i.e., columns in the Fourier matrix.

And both of them are orthonormal bases on Cn.
The purpose of this article is to establish following two relations:

Assertion 1 (for prime numbers). If n is a prime number and Γ ⊂ Zn × Zn, then there exists �c ∈ Cn

such that (Γ, �c) is an orthonormal basis for Cn if and only if there is a proper (and non-trivial) subgroup 
H � Zn × Zn so that Γ takes precisely one element from each coset of H, i.e., |Γ| = n and

Γ ×H = Zn × Zn.

Assertion 2 (for composite numbers). If Γ ⊂ Zn × Zn satisfies one of the following two conditions:

(I) Γ � Zn × Zn is itself a subgroup of order n,
(II) there exists an order n subgroup H �Zn×Zn such that Γ takes precisely one element from each coset 

of H, i.e.,

Γ ×H = Zn × Zn,

then one can find �c ∈ Cn such that (Γ, �c) is an orthonormal basis for Cn.

If n is a prime number then Γ satisfying (I) in Assertion 2 automatically implies that it also satisfies (II). 
Indeed, in this case, any proper (and non-trivial) subgroups is cyclic, and takes one of the following form 
(by Sylow theorems):

Hs =

⎧⎪⎪⎨
⎪⎪⎩
{(ks, k)}k∈Zn

, s = 1, 2, . . . n− 1,
{(0, k)}k∈Zn

, s = 0,
{(j, 0)}j∈Zn

, s = ∞,

(6)

they pairwise intersect trivially and jointly cover the whole group. Moreover, Zn×Zn = Hs×H0 = Hs×H∞
(s = 1, 2, . . . , p − 1) holds (i.e., if Γ is a proper and non-trivial subgroup, then it is at the same time also 
the quotient of another such subgroup), thus (I) is contained in (II) for prime n. There is also a geometric 
interpretation for (II), see the appendix.

Our result is novel in the following three aspects:

(i) The necessity of the condition in Assertion 1 has not been shown before;
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(ii) The sufficiency of (I) in Assertion 2 is unknown before;
(iii) The sufficiency of (II) in Assertion 2 is partially known before (e.g., see [9]), but to the author’s 

knowledge, previously H was only stated as a subgroup such that members in π(H) mutually commute. 
We are now providing a better and clearer characterization that all subgroups of order n have this 
property.

We also give an explicit example of Γ (when n is a composite number) that satisfies (I) in Assertion 2 but 
not (II), which shows that these two conditions can not be combined as in Assertion 1, and produce the 
corresponding window vector �c and unitary Gabor matrix GΓ(�c).

2. Preliminaries

If H�Zn×Zn is a subgroup, and members in π(H) mutually commute with each other, then H is called 
an isotropy subgroup in some literature (see e.g., [9] for relevant backgrounds from physics with respect to 
this name). This type of subgroups plays a central role in discrete time-frequency analysis, trivial examples 
of such subgroups (apply (3) to verify) include cyclic subgroups and lattice subgroups generated by (a, 0)
and (0, b) where ab = n (only exists if n is composite). It may not be immediately clear that actually all 
subgroups of order n have such a property, which is a simple consequence of [18, Theorem 1]:

Proposition 1. If H � Zn × Zn is a subgroup of order n, then members in π(H) mutually commute.

Proof. A subgroup in Zn × Zn can be identified and visualized in the plane with sublattices of the lattice 
Zn×Zn (1d lattice for cyclic subgroups and 2d lattice for other cases, see [18]). [18, Theorem 1] shows that 
if H � Zn × Zn is a subgroup of order n, then it can be generated by (a, 0) and (s, b) with

ab = n, s = ta

gcd(a, n
b ) , 0 ≤ t ≤ gcd(a, n

b
) − 1

for properly chosen a, b, t. It is cyclic if and only if

gcd(n
a
,
n

b
,
ns

ab
) = 1.

Consequently any two elements from π(H) satisfy (3) and thus commute. �
Equip the matrix space Cn×n with the inner product

〈A,B〉 = tr(AB∗),

where tr is the trace. We provide a simpler proof for the following property repeated from [17]:

Proposition 2. [17, Proposition 6.1 and Equation (6.7)]

(i) 1√
n
π(Zn × Zn) is an orthonormal basis for Cn×n.

(ii) If {Ak}n
2

k=1 is an orthonormal basis for Cn×n, then for any �c ∈ Cn, {Ak�c}n
2

k=1 is always a tight frame 
for Cn with frame constant ‖�c‖2. In particular, the full discrete Gabor system (Zn × Zn, �c) is a tight 
frame with frame constant n‖�c‖2.

Proof. (i) can be easily verified by direct computation. For (ii), take any �x ∈ Cn, if {Ak}n
2

k=1 is an orthonor-
mal basis for Cn×n, then we have
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n2∑
k=1

|〈�x,Ak�c〉|2 =
n2∑
k=1

| tr(�x�c ∗A∗
k)|2 =

n2∑
k=1

|〈�x�c ∗, Ak〉|2 = ‖�c‖2‖�x‖2,

which shows that it is a tight frame for Cn with frame constant ‖�c‖2. The rest follows from (i). �
For a vector �x = (x1, x2, . . . , xn)T ∈ Cn, denote

P�x = �x�x∗, D�x = diag(x1, x2, . . . , xn),

i.e., P�x is the (scaled) one dimensional projector onto the span of �x, and D�x is the diagonal matrix with 
elements in �x lying on its main diagonal.

Denote ◦ as the matrix Hadamard product (i.e., A ◦ B = [AijBij ]ij). For j = 0, 1, . . . , n − 1, let �wj be 
the (j + 1)-th column in the scaled Fourier matrix 

√
nW , i.e.,

�wj = (1, ωj , ω2j , . . . , ω(n−1)j)T .

For an arbitrary matrix A ∈ Cn×n, it is easy to verify (alternatively see [4, Chapter 5]) that

π(j, 0)Aπ∗(j, 0) = A ◦ P�wj
. (7)

One may also check that if n is an odd prime, then eigenvectors of Hs (for s = 0, 1, 2, . . . , n − 1) are 
columns in DsW , where D is a diagonal matrix with the m-th entry on its main diagonal being ωm(m−1)/2. 
These eigenvectors are also examples of bi-unimodular sequences and CAZAC (constant amplitude zero auto 
correlation) sequences, as well as mutually unbiased bases, and are connected to so called cyclic n-roots. 
See e.g., [3,11,13]. We omit concrete formulas for other cases here since they are not directly related to our 
topic. In this article we only need the fact that discrete time-frequency shifts are diagonalizable by unitary 
matrices (In particular, they are unitary row scalings applied to the Fourier matrix).

Next, we establish the sufficiency of (II) for all n as Proposition 3 below, this result is already shown in 
[9], but the proof we are giving here is relatively more elementary, and it relies on two technical lemmas:

Lemma 1. Let H�Zn×Zn be a subgroup of order n, let V be an eigenmatrix that simultaneously diagonalizes 
members of π(H). If �v is a column in V , then

(i) P�v ∈ span (π(H)).
(ii) If (a, b) /∈ H, then P�v ⊥ π(a, b).

Proof. Suppose members in π(H) are diagonalized as V D�a1V
∗, V D�a2V

∗, . . . , V D�an
V ∗ where without loss 

of generality we may arrange V properly so that �v is the first column of V , then a linear combination will 
result in

x1V D�a1V
∗ + x2V D�a2V

∗ + . . . + xnV D�an
V ∗ = V D�yV

∗,

where

�y = x1�a1 + x2�a2 + . . . + xn�an.

Recall from Proposition 2 that π(Zn×Zn) forms a basis for Cn×n, thus members in π(H) must be linearly 
independent, which from the above equation implies that �a1, �a2, . . . , �an must also be linearly independent. 
Consequently there exist coefficients x1, x2, . . . , xn that yields �y = (1, 0, . . . , 0), which is also the linear 
combination that gives P�v. This establishes (i).
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If (a, b) /∈ H, then again by Proposition 2, π(a, b) ⊥ π(H), hence by (i) it is also perpendicular to P�v, 
and (ii) follows. �

If n is a prime number, then the following lemma is just a trivial statement following from the orbit-
stabilizer theorem. If n is a composite number, then it is not immediate that H is (instead of being a 
subgroup of) the stabilizer subgroup for �v. We thus provide a quick proof:

Lemma 2. Let H�Zn×Zn be a subgroup of order n, let V be an eigenmatrix that simultaneously diagonalizes 
members of π(H). If �v is a column in V , then each coset of H uniquely maps �v to a distinct column (up to 
the difference of a unit phase factor eiθ for some θ) in V .

Proof. Let (j, k) ∈ H be arbitrary, and denote the eigenvalue of π(j, k) for �v as λ (obviously |λ| = 1 since 
π(j, k) is unitary), then for any (a, b) ∈ Zn × Zn we have

π(j, k)π(a, b)�v = ωjb−kaπ(a, b)π(j, k)�v = λ ωjb−kaπ(a, b)�v,

which shows π(a, b)�v is also a shared unit eigenvector for members of π(H). Now if (a, b) and (a′, b′) belong 
to different cosets of H, i.e., (a − a′, b − b′) /∈ H, then we have

|〈π(a, b)�v, π(a′, b′)�v〉| = |〈π(a− a′, b− b′)�v,�v〉| = |〈π(a− a′, b− b′), P�v〉| = 0,

where the last equality follows from Lemma 1. This orthogonality shows their distinctness. �
Proposition 3 (Sufficiency of (II) in Assertion 2, [9]). Let H � Zn × Zn be a subgroup of order n, if Γ
consists of precisely one element from each coset of H, i.e., |Γ| = n and

Zn × Zn = Γ ×H,

then there exists �c ∈ Cn such that (Γ, �c) forms an orthonormal basis for Cn.

Proof. Let V be an eigenmatrix that simultaneously diagonalizes members of π(H), it suffices to take an 
arbitrary column in V as the window vector �c, then by Lemma 2, GΓ(�c) differs from V by at most a column 
permutation and a unitary column scaling, consequently it is also unitary, thus (Γ, �c) is an orthonormal 
basis for Cn. �

Now Define the difference set ΔΓ of Γ to be

ΔΓ = {(j − j′, k − k′) : (j, k), (j′, k′) ∈ Γ, (j, k) �= (j′, k′)},

if H � Zn × Zn is a subgroup, then clearly (j − j′, k − k′) ∈ H if and only if they lie in the same coset of 
H, therefore if |Γ| = n, then

ΔΓ ∩H = ∅ ⇔ Zn × Zn = Γ ×H. (8)

Lemma 3. Take Γ ⊂ Zn × Zn with |Γ| = n and �c ∈ Cn with unit norm, then

(Γ,�c) is orthonormal ⇔ P�c ⊥ π(ΔΓ).
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Proof. Observe that the inner product of any two distint vectors π(j, k)�c and π(j′, k′)�c in (Γ, �c) is of form 
ωh〈π(j − j′, k − k′)�c, �c〉 where h can be computed using (3). Therefore (Γ, �c) is orthonormal if and only if

0 = |ωh〈π(j − j′, k − k′)�c,�c〉| = | tr (π(j − j′, k − k′)P�c) | = |〈π(j − j′, k − k′), P�c〉|,

i.e., P�c ⊥ π(ΔΓ). �
3. The case of prime numbers

Lemma 4. Let p be a prime number, �c ∈ Cp and Γ ⊂ Zp×Zp with |Γ| = p. For any proper (and non-trivial) 
subgroup Hs � Zn × Zn, if (Γ, �c) is an orthonormal basis for Cp, but ΔΓ ∩Hs �= ∅, then (Hs, �c) is also an 
orthonormal basis for Cp.

Proof. Recall the form of Hs from (6), to make our discussion easier we shall first look at s = 0, 1, 2 . . . , p −1.
Denote elements in Γ as (j1, k1), (j2, k2), . . . , (jp, kp), and consider the concatenated matrix

G =
[

G(j1,k1)+Hs
(�c) | G(j2,k2)+Hs

(�c) | . . . | G(jp,kp)+Hs
(�c)

]
.

Rearranging columns in G we will get the following concatenated matrix

[
G(s,1)+Γ(�c) | G(2s,2)+Γ(�c) | . . . | G(ps,p)+Γ(�c)

]
.

After a unitary column scaling due to (4) it can be further written as

[ π(s, 1)GΓ(�c) | π(2s, 2)GΓ(�c) | . . . | π(ps, p)GΓ(�c) ] .

Each π(ks, k) is unitary, and by our assumption GΓ(�c) is also unitary, hence the above is just p unitary 
matrices concatenated together. Therefore

GG∗ = pI,

where I ∈ Cp×p is the identity matrix.
On the other hand, (ji, ki) +Hs is a coset of Hs, recall that such a representation of a coset is not unique, 

in particular, for each i = 1, 2, . . . , p, there exists an ai so that

(ji, ki) + Hs = (ai, 0) + Hs, (9)

since one may verify that

Zp × Zp = Hs ×H∞, s = 0, 1, 2, . . . , p− 1,

also holds. Consequently we may rewrite G as

G =
[

G(a1,0)+Hs
(�c) | G(a2,0)+Hs

(�c) | . . . | G(ap,0)+Hs
(�c)

]
.

If we denote

As = GHs
(�c)G∗

Hs
(�c),

and combine all above equations together, then we get
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pI = GG∗ =
p∑

i=1
π(ai, 0)Asπ

∗(ai, 0) = As ◦ (
p∑

i=1
P�wai

), (10)

where the last equality follows from (7).
Now let us inspect the part 

∑p
i=1 P�wai

. Obviously its main diagonal is pI, thus comparing both sides 
of (10) we conclude that the main diagonal of As must be I; Each off diagonal element in 

∑p
i=1 P�wai

is a 
polynomial of ω with non-negative integer coefficients, i.e., they are of form

c0 + c1ω + . . . + cp−1ω
p−1,

with

c0, c1, . . . , cp−1 ∈ N ∪ {0}, c0 + c1 + . . . + cp−1 = p. (11)

Recall the assumption that Γ ∩ Hs �= ∅, i.e., Γ does not consist of precisely one element from each coset 
of Hs, having duplication simply means that there exist some distinct i, j with �wai

= �waj
, i.e., at least 

one of c0, c1, . . . , cp−1 is 0. But for a prime number p, the minimum polynomial of ω over Q is the p-th 
cyclotomic polynomial 1 + ω + . . . + ωp−1 (see e.g. [2, p.299]), therefore the only set of coefficients that 
produces c0 + c1ω + . . . + cp−1ω

p−1 = 0 while satisfying (11) is c0 = c1 = . . . = cp−1 = 1. Consequently off 
diagonal elements in 

∑p
i=1 P�wai

can not be 0. It then requires all off diagonal elements in As to be 0 for 
(10) to hold.

Together we obtain that As = I, i.e., GHs
(�c) is unitary, and thus (Hs, �c) is an orthonormal basis for Cp.

The case s = ∞ is essentially proved in the same way as above, we repeat all steps till (9), which we now 
replace with

(ji, ki) + H∞ = (0, bi) + H∞,

then (10) becomes

pI =
p∑

i=1
π(0, bi)A∞π∗(0, bi),

where A∞ is defined in the same way, i.e., A∞ = GH∞(�c)G∗
H∞

(�c).
Applying (1) to diagonalize π(0, bi) and π∗(0, bi), and conjugating both sides by W simultaneously we 

get

pI =
p∑

i=1
π(bi, 0)WA∞W ∗π∗(bi, 0),

which again brings us back to the same form as in (10), thus with same arguments we can conclude that 
WA∞W ∗ = I, i.e., A∞ = I, which further implies that GH∞(�c) is unitary, and thus (H∞, �c) is also an 
orthonormal basis for Cp. �
Theorem 1. Let p be a prime number and Γ ⊂ Zn × Zn, then there exists �c ∈ Cp such that (Γ, �c) forms an 
orthonormal basis for Cp if and only if there is a proper (and non-trivial) subgroup Hs � Zn × Zn, so that 
Γ consists of precisely one element from each coset of Hs, i.e., |Γ| = n and

Zn × Zn = Γ ×Hs.
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Proof. As argued, the sufficiency follows from Proposition 3. For the necessity, assume the contrary that 
(Γ, �c) is an orthonormal basis for Cp, but there is no proper and non-trivial subgroup Hs that satisfies the 
condition Zp × Zp = Γ ×Hs. By (8), this means

ΔΓ ∩Hs �= ∅,

for all Hs. Then by Lemma 4, this implies (Hs, �c) is also an orthonormal basis for Cp, consequently by 
Lemma 3 we obtain

P�c ⊥ π(ΔHs),

and this holds for all s. Now since Hs is a group, its difference set is simply

ΔHs = Hs \ {(0, 0)}.

Recall that since p is a prime number, Hs for s = 0, 1, . . . , p, ∞ intersect trivially and jointly cover the whole 
group, therefore

⋃
s

ΔHs = Zp × Zp \ {(0, 0)},

and thus

P�c ⊥ π (Zp × Zp \ {(0, 0)}) .

Now by Proposition 2, π(Zp × Zp) is an orthogonal basis for the matrix space Cp×p, which left us with

P�c ∈ span (π(0, 0)) ,

i.e., it is a constant multiple of the identity matrix I, but

rank(P�c) = 1 �= p = rank(I),

which is a contradiction. �
4. The case of composite numbers

Lemma 5. If H �Zn ×Zn is a subgroup of order n, and PH is the average of simultaneous conjugations by 
members in π(H), i.e.,

PH(A) = 1
n

∑
(j,k)∈H

π(j, k)Aπ∗(j, k), A ∈ Cn,

then PH is the orthogonal projection of A onto the span of π(H).

Proof. For any two (j, k), (j′, k′) ∈ H, we have by (4), (5) that

π(j′, k′)π(j, k)Aπ∗(j, k)π∗(j′, k′) = π(j + j′, k + k′)Aπ∗(j + j′, k + k′),

consequently since H is a group we obtain
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P 2
H(A) = 1

n2

∑
(j′,k′),(j,k)∈H

π(j + j′, k + k′)Aπ∗(j + j′, k + k′) = 1
n

∑
(j,k)∈H

π(j, k)Aπ∗(j, k) = PH(A),

which shows it is a projection.
Now for any (j, k) ∈ H, the fact that it commutes with any member in π(H) implies that

PH(A)π∗(j, k) = PH (Aπ∗(j, k)) ,

while the cyclic invariance of the trace shows that

tr (PH (Aπ∗(j, k))) = tr (Aπ∗(j, k)) ,

i.e., the range of I − PH (I is the identity operator) is orthogonal to the range of PH since

tr ((A− PH(A))π∗(j, k)) = 0,

which shows the orthogonality of PH . �
The following commutativity relation is established for lattice subgroups generated by (a, 0) and (0, b)

with ab = n in [17, Proposition 6.2], using Proposition 1 and Lemma 5 we can generalize it to all order n
subgroups:

Corollary 1. If H � Zn × Zn is a subgroup of order n, then the frame operator of (H, �c) commutes with 
π(j, k) for any (j, k) ∈ H.

Proof. The frame operator is GH(�c)G∗
H(�c), which can also be written as nPH(P�c), then by Lemma 5, it is 

a linear combination of members in π(H), thus of course commutes with π(j, k) for any (j, k) ∈ H since by 
Proposition 1 members in π(H) mutually commute. �
Theorem 2. If Γ ⊂ Zn × Zn satisfies one of the following two conditions:

(I) Γ � Zn × Zn is itself a subgroup of order n,
(II) there exists an order n subgroup H �Zn×Zn such that Γ takes precisely one element from each coset 

of H, i.e.,

Γ ×H = Zn × Zn,

then one can find �c ∈ Cn such that (Γ, �c) is an orthonormal basis on Cn.

Proof. (II) is simply Proposition 3, thus it suffices to consider only (I).
If Γ is a subgroup of order n, then we take some �d ∈ Cn such that GΓ(�d) is non-singular. The main 

result of [19] indicates that such �d not only exists but also forms an open dense subset of Cn. Denote 
S = GΓ(�d)G∗

Γ(�d) as the frame operator of (Γ, �d), it is easy to verify that the matrix S− 1
2GΓ(�d) is unitary 

(i.e., the polar decomposition). By Corollary 1, S commutes with π(j, k) for any (j, k) ∈ Γ, thus

S− 1
2GΓ(�d) = GΓ(S− 1

2 �d),

i.e., (Γ, S− 1
2 �d) is an orthonormal basis on Cn. �
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Below is a simple example in which Γ satisfies (I) but not (II):
Take n = 4, and Γ = {(0, 0), (2, 0), (0, 2), (2, 2)} � Z4 × Z4, i.e., Γ is isomorphic to the Klein four group 

Z2 × Z2. Clearly for any subgroup H � Z4 × Z4, we always have Z2 × Z2 × H �= Z4 × Z4, otherwise it 
would contradict the fundamental theorem of finite Abelian groups. This shows Γ satisfies (I) but not (II). 
An explicit choice of the window vector in this case is �c = (1, 1, 0, 0)T /

√
2, so that

GΓ(�c) = (�c, π(2, 0)�c, π(0, 2)�c, π(2, 2)�c) = 1√
2

⎛
⎜⎝

1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

⎞
⎟⎠ ,

which is unitary. Moreover, GΓ(�c) has a block diagonal structure, i.e.,

GΓ(�c) =
(
W 0
0 W

)
,

where W is the 2 × 2 Fourier matrix.
In general, one can derive in a similar way that if n = m2 for some natural number m ≥ 2, and Γ is 

the subgroup generated by (0, m) and (m, 0), then choosing �c = 1√
m

(1, . . . , 1︸ ︷︷ ︸
m items

, 0, . . . , 0)T leads to the unitary 

block diagonal matrix GΓ(�c) = diag(W, . . . ,W︸ ︷︷ ︸
m items

) where W is the m × m Fourier matrix. In particular, Γ

satisfies (I) but not (II) in such cases.
There are little clues concerning whether the necessity holds for composite n as well, yet from a purely 

aesthetic perspective, the author tends to conjecture that such a symmetric statement (Γ is either a subgroup 
of order n or the quotient of such a subgroup) should be true.

Appendix. Shapes of support sets

Finally we provide an interesting interpretation of the condition in Theorem 1 and condition (II) in 
Theorem 2. Plot Zn × Zn on an n × n grid with (j, k) mapped to the corresponding cell (orientation of 
coordinates does not matter). Because of the group structure, opposite edges are identifiable with each 
other, thus we obtain a torus. Each support set Γ now occupies a number of cells in the grid, and Γ ×Hs

can be visualized as shifting Γ along the line of slope s. The condition Γ × Hs = Zn × Zn means that it 
tiles up the whole grid on the torus.

Below is an example for Γ = {(0, 0), (1, 0), (0, 1)} ⊂ Z3×Z3, which consists of precisely one element from 
each coset of H1, and it tiles up the grid when shifted along the subgroup H1.

Γ Γ Γ Γ

Now regions of certain shapes will always admit orthonormal Gabor bases. For instance, consider 
{(0, 0), (0, 1), . . . , (0, k)} ∪ {(1, 0), (2, 0), . . . , (n − k − 1, 0)} ⊂ Zn × Zn where k is a fixed number between 
1 and n − 2. We may call it an L-shaped region, the name is self-explanatory. It is easy to verify that 
ΔΓ ∩H1 = ∅ holds for any L-shaped region Γ, therefore orthonormal Gabor bases always exist on L-shaped 
regions.
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